ﻻ يوجد ملخص باللغة العربية
A strong $k$-edge-coloring of a graph G is an edge-coloring with $k$ colors in which every color class is an induced matching. The strong chromatic index of $G$, denoted by $chi_{s}(G)$, is the minimum $k$ for which $G$ has a strong $k$-edge-coloring. In 1985, ErdH{o}s and Nev{s}etv{r}il conjectured that $chi_{s}(G)leqfrac{5}{4}Delta(G)^2$, where $Delta(G)$ is the maximum degree of $G$. When $G$ is a graph with maximum degree at most 3, the conjecture was verified independently by Andersen and Hor{a}k, Qing, and Trotter. In this paper, we consider the list version of strong edge-coloring. In particular, we show that every subcubic graph has strong list-chromatic index at most 11 and every planar subcubic graph has strong list-chromatic index at most 10.
A strong edge colouring of a graph is an assignment of colours to the edges of the graph such that for every colour, the set of edges that are given that colour form an induced matching in the graph. The strong chromatic index of a graph $G$, denoted
The strong chromatic index of a graph $G$, denoted $chi_s(G)$, is the least number of colors needed to edge-color $G$ so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted $chi_{s,ell}(G)$, is the lea
Wegner conjectured in 1977 that the square of every planar graph with maximum degree at most $3$ is $7$-colorable. We prove this conjecture using the discharging method and computational techniques to verify reducible configurations.
Let $G$ be a simple graph with maximum degree $Delta(G)$. A subgraph $H$ of $G$ is overfull if $|E(H)|>Delta(G)lfloor |V(H)|/2 rfloor$. Chetwynd and Hilton in 1985 conjectured that a graph $G$ on $n$ vertices with $Delta(G)>n/3$ has chromatic index $
Let $chi_k(G)$ denote the minimum number of colors needed to color the edges of a graph $G$ in a way that the subgraph spanned by the edges of each color has all degrees congruent to $1 pmod k$. Scott [{em Discrete Math. 175}, 1-3 (1997), 289--291] p