ترغب بنشر مسار تعليمي؟ اضغط هنا

A high-performance interactive computing framework for engineering applications

67   0   0.0 ( 0 )
 نشر من قبل Ralf-Peter Mundani
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

To harness the potential of advanced computing technologies, efficient (real time) analysis of large amounts of data is as essential as are front-line simulations. In order to optimise this process, experts need to be supported by appropriate tools that allow to interactively guide both the computation and data exploration of the underlying simulation code. The main challenge is to seamlessly feed the user requirements back into the simulation. State-of-the-art attempts to achieve this, have resulted in the insertion of so-called check- and break-points at fixed places in the code. Depending on the size of the problem, this can still compromise the benefits of such an attempt, thus, preventing the experience of real interactive computing. To leverage the concept for a broader scope of applications, it is essential that a user receives an immediate response from the simulation to his or her changes. Our generic integration framework, targeted to the needs of the computational engineering domain, supports distributed computations as well as on-the-fly visualisation in order to reduce latency and enable a high degree of interactivity with only minor code modifications. Namely, the regular course of the simulation coupled to our framework is interrupted in small, cyclic intervals followed by a check for updates. When new data is received, the simulation restarts automatically with the updated settings (boundary conditions, simulation parameters, etc.). To obtain rapid, albeit approximate feedback from the simulation in case of perpetual user interaction, a multi-hierarchical approach is advantageous. Within several different engineering test cases, we will demonstrate the flexibility and the effectiveness of our approach.



قيم البحث

اقرأ أيضاً

With the growing popularity of cloud gaming and cloud virtual reality (VR), interactive 3D applications have become a major type of workloads for the cloud. However, despite their growing importance, there is limited public research on how to design cloud systems to efficiently support these applications, due to the lack of an open and reliable research infrastructure, including benchmarks and performance analysis tools. The challenges of generating human-like inputs under various system/application randomness and dissecting the performance of complex graphics systems make it very difficult to design such an infrastructure. In this paper, we present the design of a novel cloud graphics rendering research infrastructure, Pictor. Pictor employs AI to mimic human interactions with complex 3D applications. It can also provide in-depth performance measurements for the complex software and hardware stack used for cloud 3D graphics rendering. With Pictor, we designed a benchmark suite with six interactive 3D applications. Performance analyses were conducted with these benchmarks to characterize 3D applications in the cloud and reveal new performance bottlenecks. To demonstrate the effectiveness of Pictor, we also implemented two optimizations to address two performance bottlenecks discovered in a state-of-the-art cloud 3D-graphics rendering system, which improved the frame rate by 57.7% on average.
The amazing advances being made in the fields of machine and deep learning are a highlight of the Big Data era for both enterprise and research communities. Modern applications require resources beyond a single nodes ability to provide. However this is just a small part of the issues facing the overall data processing environment, which must also support a raft of data engineering for pre- and post-data processing, communication, and system integration. An important requirement of data analytics tools is to be able to easily integrate with existing frameworks in a multitude of languages, thereby increasing user productivity and efficiency. All this demands an efficient and highly distributed integrated approach for data processing, yet many of todays popular data analytics tools are unable to satisfy all these requirements at the same time. In this paper we present Cylon, an open-source high performance distributed data processing library that can be seamlessly integrated with existing Big Data and AI/ML frameworks. It is developed with a flexible C++ core on top of a compact data structure and exposes language bindings to C++, Java, and Python. We discuss Cylons architecture in detail, and reveal how it can be imported as a library to existing applications or operate as a standalone framework. Initial experiments show that Cylon enhances popular tools such as Apache Spark and Dask with major performance improvements for key operations and better component linkages. Finally, we show how its design enables Cylon to be used cross-platform with minimum overhead, which includes popular AI tools such as PyTorch, Tensorflow, and Jupyter notebooks.
The advent of experimental science facilities-instruments and observatories, such as the Large Hadron Collider, the Laser Interferometer Gravitational Wave Observatory, and the upcoming Large Synoptic Survey Telescope-has brought about challenging, l arge-scale computational and data processing requirements. Traditionally, the computing infrastructure to support these facilitys requirements were organized into separate infrastructure that supported their high-throughput needs and those that supported their high-performance computing needs. We argue that to enable and accelerate scientific discovery at the scale and sophistication that is now needed, this separation between high-performance computing and high-throughput computing must be bridged and an integrated, unified infrastructure provided. In this paper, we discuss several case studies where such infrastructure has been implemented. These case studies span different science domains, software systems, and application requirements as well as levels of sustainability. A further aim of this paper is to provide a basis to determine the common characteristics and requirements of such infrastructure, as well as to begin a discussion of how best to support the computing requirements of existing and future experimental science facilities.
Programming current supercomputers efficiently is a challenging task. Multiple levels of parallelism on the core, on the compute node, and between nodes need to be exploited to make full use of the system. Heterogeneous hardware architectures with ac celerators further complicate the development process. waLBerla addresses these challenges by providing the user with highly efficient building blocks for developing simulations on block-structured grids. The block-structured domain partitioning is flexible enough to handle complex geometries, while the structured grid within each block allows for highly efficient implementations of stencil-based algorithms. We present several example applications realized with waLBerla, ranging from lattice Boltzmann methods to rigid particle simulations. Most importantly, these methods can be coupled together, enabling multiphysics simulations. The framework uses meta-programming techniques to generate highly efficient code for CPUs and GPUs from a symbolic method formulation. To ensure software quality and performance portability, a continuous integration toolchain automatically runs an extensive test suite encompassing multiple compilers, hardware architectures, and software configurations.
The ANTAREX project relies on a Domain Specific Language (DSL) based on Aspect Oriented Programming (AOP) concepts to allow applications to enforce extra functional properties such as energy-efficiency and performance and to optimize Quality of Servi ce (QoS) in an adaptive way. The DSL approach allows the definition of energy-efficiency, performance, and adaptivity strategies as well as their enforcement at runtime through application autotuning and resource and power management. In this paper, we present an overview of the key outcome of the project, the ANTAREX DSL, and some of its capabilities through a number of examples, including how the DSL is applied in the context of the project use cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا