ﻻ يوجد ملخص باللغة العربية
To harness the potential of advanced computing technologies, efficient (real time) analysis of large amounts of data is as essential as are front-line simulations. In order to optimise this process, experts need to be supported by appropriate tools that allow to interactively guide both the computation and data exploration of the underlying simulation code. The main challenge is to seamlessly feed the user requirements back into the simulation. State-of-the-art attempts to achieve this, have resulted in the insertion of so-called check- and break-points at fixed places in the code. Depending on the size of the problem, this can still compromise the benefits of such an attempt, thus, preventing the experience of real interactive computing. To leverage the concept for a broader scope of applications, it is essential that a user receives an immediate response from the simulation to his or her changes. Our generic integration framework, targeted to the needs of the computational engineering domain, supports distributed computations as well as on-the-fly visualisation in order to reduce latency and enable a high degree of interactivity with only minor code modifications. Namely, the regular course of the simulation coupled to our framework is interrupted in small, cyclic intervals followed by a check for updates. When new data is received, the simulation restarts automatically with the updated settings (boundary conditions, simulation parameters, etc.). To obtain rapid, albeit approximate feedback from the simulation in case of perpetual user interaction, a multi-hierarchical approach is advantageous. Within several different engineering test cases, we will demonstrate the flexibility and the effectiveness of our approach.
With the growing popularity of cloud gaming and cloud virtual reality (VR), interactive 3D applications have become a major type of workloads for the cloud. However, despite their growing importance, there is limited public research on how to design
The amazing advances being made in the fields of machine and deep learning are a highlight of the Big Data era for both enterprise and research communities. Modern applications require resources beyond a single nodes ability to provide. However this
The advent of experimental science facilities-instruments and observatories, such as the Large Hadron Collider, the Laser Interferometer Gravitational Wave Observatory, and the upcoming Large Synoptic Survey Telescope-has brought about challenging, l
Programming current supercomputers efficiently is a challenging task. Multiple levels of parallelism on the core, on the compute node, and between nodes need to be exploited to make full use of the system. Heterogeneous hardware architectures with ac
The ANTAREX project relies on a Domain Specific Language (DSL) based on Aspect Oriented Programming (AOP) concepts to allow applications to enforce extra functional properties such as energy-efficiency and performance and to optimize Quality of Servi