ﻻ يوجد ملخص باللغة العربية
An extensive analysis of Ulysses observations of the solar wind speed V from 1990 to 2008 is undertaken. It is shown that the evolution of V with heliocentric distance r depends substantially on both the heliolatitude and the solar activity cycle. Deviations from the predicted Parkers profile of V(r) are so considerable that cannot be explained by a scarcity of measurements or other technical effects. In particular, the expected smooth growth of the solar wind speed with r is typical only for the solar activity maximum and for low heliolatitudes (lower than +/-40deg), while at high latitudes, there are two V(r) branches: growing and falling. In the solar activity maximum, V increases toward the solar pole in the North hemisphere only; however, in the South hemisphere, it decreases with heliolatitude. In the minimum of solar activity, the profile of V(r) at low heliolatitudes has a local minimum between 2 and 5 AU. This result is confirmed by the corresponding data from other spacecraft (Voyager 1 and Pioneer 10). Unexpected spatial variations in V at low heliolatitudes can be explained by the impact of coronal hole flows on the V(r) profile since the flows incline to the ecliptic plane. To reproduce the impact of spatial variations of V in the polar corona on the behavior of V at low heliolatitudes, a stationary one-fluid ideal MHD-model is developed with account of recent results on imagery of the solar wind speed in the corona up to 5.5 solar radii obtained on the basis of combined observations from SOHO/UVCS, LASCO, and Mauna Loa.
The solar corona is a complex system, with nonisothermal plasma and being in the self-gravitating field of the Sun. So the corona plasma is not only a nonequilibrium system but also a nonextensive one. We estimate the parameter of describing the degr
We investigate the spatial correlation properties of the solar wind using simultaneous observations by the ACE and WIND spacecraft. We use mutual information as a nonlinear measure of correlation and compare this to linear correlation. We find that t
Spacecraft observations have shown that the proton temperature in the solar wind falls off with radial distance more slowly than expected for an adiabatic prediction. Usually, previous studies have been focused on the evolution of the solar-wind plas
Unconditional and conditional statistics is used for studying the histograms of magnetic field multi-scale fluctuations in the solar wind near the solar cycle minimum in 2008. The unconditional statistics involves the magnetic data during the whole y
We study how a high-speed solar wind stream embedded in a slow solar wind influences the spread of solar energetic protons in interplanetary space. To model the energetic protons, we used a recently developed particle transport code that computes par