ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid, accurate, and precise concentration measurements of a methanol-water mixture using Raman spectroscopy

55   0   0.0 ( 0 )
 نشر من قبل Daniel Hickstein
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we design, construct, and characterize a compact Raman-spectroscopy-based sensor that measures the concentration of a water-methanol mixture. The sensor measures the concentration with an accuracy of 0.5% and a precision of 0.2% with a 1 second measuring time. With longer measurement times, the precision reaches as low as 0.006%. We characterize the long-term stability of the instrument over an 11-day period of constant measurement, and confirm that systematic drifts are on the level of 0.02%. We describe methods to improve the sensor performance, providing a path towards accurate, precise, and reliable concentration measurements in harsh environments. This sensor should be adaptable to other water-alcohol mixtures, or other small-molecule liquid mixtures.



قيم البحث

اقرأ أيضاً

Non-intrusive detection systems have the potential to characterise materials through various transparent glass and plastic containers. Food and drink adulteration is increasingly problematic, representing a serious health risk as well as an economic issue. This is of particular concern for alcoholic spirits such as Scotch whisky which are often targeted for fraudulent activity. We have developed a Raman system with a novel geometry of excitation and collection, exploiting the beam propagation from an axicon lens resulting in an annular beam that transforms to a Bessel illumination within the sample. This facilitates the efficient acquisition of Raman signals from the alcoholic spirit contained inside the bottle, while avoiding the collection of auto-fluorescence signals generated by the bottle wall. Therefore, this technique provides a way of non-destructive and non-contact detection to precisely analyse the contents without the requirement to open the bottle.
While mid-infrared radiation can be used to identify and quantify numerous chemical species, contemporary broadband mid-IR spectroscopic systems are often hindered by large footprints, moving parts and high power consumption. In this work, we demonst rate multiheterodyne spectroscopy using interband cascade lasers, which combines broadband spectral coverage with high spectral resolution and energy-efficient operation. The lasers generate up to 30 mW of continuous wave optical power while consuming less than 0.5 W of electrical power. A computational phase and timing correction algorithm is used to obtain kHz linewidths of the multiheterodyne beat notes and up to 30 dB improvement in signal-to-noise ratio. The versatility of the multiheterodyne technique is demonstrated by performing both rapidly swept absorption and dispersion spectroscopic assessments of low-pressure ethylene (C$_2$H$_4$) acquired by extracting a single beat note from the multiheterodyne signal, as well as broadband multiheterodyne spectroscopy of methane (CH$_4$) acquired with all available beat notes with microsecond temporal resolution and an instantaneous optical bandwidth of 240 GHz. The technology shows excellent potential for portable and high-resolution solid state spectroscopic chemical sensors operating in the mid-infrared.
In dissolution-dynamic nuclear polarization, nuclear spins are hyperpolarized at cryogenic temperatures using radicals and microwave irradiation. The hyperpolarized solid is dissolved with hot solvent and the solution is transferred to a secondary ma gnet where strongly enhanced magnetic resonance signals are observed. Here we present a method for transferring the hyperpolarized solid. A bullet containing the frozen, hyperpolarized sample is ejected using pressurized helium gas, and shot into a receiving structure in the secondary magnet, where the bullet is retained and the polarized solid is dissolved rapidly. The transfer takes approximately 70 ms. A solenoid, wound along the entire transfer path ensures adiabatic transfer and limits radical-induced low-field relaxation. The method is fast and scalable towards small volumes suitable for high-resolution nuclear magnetic resonance spectroscopy while maintaining high concentrations of the target molecule. Polarization levels of approximately 30% have been observed for 1-$^{sf 13}$C-labelled pyruvic acid in solution.
44 - Haiwen Ge , Zhipeng Ye , 2018
We studied engine-out soot samples collected from a heavy-duty direct-injection diesel engine and a port-fuel injection gasoline spark-ignition engine. The two types of soot samples were characterized using Raman spectroscopy with different laser pow er. A Matlab program using least-square-method with trust-region-reflective algorithm was developed for curve fitting. We used a DOE (design of experiments) method to avoid local convergence. This method was used for two-band fitting and three-band fitting. The fitting results were used to determine the intensity ratio of D and G Raman bands. We find that high laser power may cause oxidation of soot samples, which gives higher D/G intensity ratio. Diesel soot has consistently higher amorphous/graphitic carbon ratio and thus higher oxidation reactivity, in comparison to gasoline soot, which is revealed by the higher D/G intensity ratio in Raman spectra measured under the same laser power.
Wide field Raman imaging using the integral field spectroscopy approach was used as a fast, one shot imaging method for the simultaneous collection of all spectra composing a Raman image. For the suppression of autofluorescence and background signals such as room light, shifted excitation Raman difference spectroscopy (SERDS) was applied to remove background artifacts in Raman spectra. To reduce acquisition times in wide field SERDS imaging, we adapted the nod and shuffle technique from astrophysics and implemented it into a wide field SERDS imaging setup. In our adapted version, the nod corresponds to the change in excitation wavelength, whereas the shuffle corresponds to the shifting of charges up and down on a Charge-Coupled Device (CCD) chip synchronous to the change in excitation wavelength. We coupled this improved wide field SERDS imaging setup to diode lasers with 784.4/785.5 and 457.7/458.9 nm excitation and applied it to samples such as paracetamol and aspirin tablets, polystyrene and polymethyl methacrylate beads, as well as pork meat using multiple accumulations with acquisition times in the range of 50 to 200 ms. The results tackle two main challenges of SERDS imaging: gradual photobleaching changes the autofluorescence background, and multiple readouts of CCD detector prolong the acquisition time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا