ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Malware Detection via CPU Power Consumption: Data Collection Design and Analytics (Extended Version)

98   0   0.0 ( 0 )
 نشر من قبل Robert Bridges
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents an experimental design and data analytics approach aimed at power-based malware detection on general-purpose computers. Leveraging the fact that malware executions must consume power, we explore the postulate that malware can be accurately detected via power data analytics. Our experimental design and implementation allow for programmatic collection of CPU power profiles for fixed tasks during uninfected and infected states using five different rootkits. To characterize the power consumption profiles, we use both simple statistical and novel, sophisticated features. We test a one-class anomaly detection ensemble (that baselines non-infected power profiles) and several kernel-based SVM classifiers (that train on both uninfected and infected profiles) in detecting previously unseen malware and clean profiles. The anomaly detection system exhibits perfect detection when using all features and tasks, with smaller false detection rate than the supervised classifiers. The primary contribution is the proof of concept that baselining power of fixed tasks can provide accurate detection of rootkits. Moreover, our treatment presents engineering hurdles needed for experimentation and allows analysis of each statistical feature individually. This work appears to be the first step towards a viable power-based detection capability for general-purpose computers, and presents next steps toward this goal.



قيم البحث

اقرأ أيضاً

Additive Manufacturing (AM), a.k.a. 3D Printing, is increasingly used to manufacture functional parts of safety-critical systems. AMs dependence on computerization raises the concern that the AM process can be tampered with, and a parts mechanical pr operties sabotaged. This can lead to the destruction of a system employing the sabotaged part, causing loss of life, financial damage, and reputation loss. To address this threat, we propose a novel approach for detecting sabotage attacks. Our approach is based on continuous monitoring of the current delivered to all actuators during the manufacturing process and detection of deviations from a provable benign process. The proposed approach has numerous advantages: (i) it is non-invasive in a time-critical process, (ii) it can be retrofitted in legacy systems, and (iii) it is airgapped from the computerized components of the AM process, preventing simultaneous compromise. Evaluation on a desktop 3D Printer detects all attacks involving a modification of X or Y motor movement, with false positives at 0%.
Recently, cyber-attacks have been extensively seen due to the everlasting increase of malware in the cyber world. These attacks cause irreversible damage not only to end-users but also to corporate computer systems. Ransomware attacks such as WannaCr y and Petya specifically targets to make critical infrastructures such as airports and rendered operational processes inoperable. Hence, it has attracted increasing attention in terms of volume, versatility, and intricacy. The most important feature of this type of malware is that they change shape as they propagate from one computer to another. Since standard signature-based detection software fails to identify this type of malware because they have different characteristics on each contaminated computer. This paper aims at providing an image augmentation enhanced deep convolutional neural network (CNN) models for the detection of malware families in a metamorphic malware environment. The main contributions of the papers model structure consist of three components, including image generation from malware samples, image augmentation, and the last one is classifying the malware families by using a convolutional neural network model. In the first component, the collected malware samples are converted binary representation to 3-channel images using windowing technique. The second component of the system create the augmented version of the images, and the last component builds a classification model. In this study, five different deep convolutional neural network model for malware family detection is used.
The vast majority of todays mobile malware targets Android devices. This has pushed the research effort in Android malware analysis in the last years. An important task of malware analysis is the classification of malware samples into known families. Static malware analysis is known to fall short against techniques that change static characteristics of the malware (e.g. code obfuscation), while dynamic analysis has proven effective against such techniques. To the best of our knowledge, the most notable work on Android malware family classification purely based on dynamic analysis is DroidScribe. With respect to DroidScribe, our approach is easier to reproduce. Our methodology only employs publicly available tools, does not require any modification to the emulated environment or Android OS, and can collect data from physical devices. The latter is a key factor, since modern mobile malware can detect the emulated environment and hide their malicious behavior. Our approach relies on resource consumption metrics available from the proc file system. Features are extracted through detrended fluctuation analysis and correlation. Finally, a SVM is employed to classify malware into families. We provide an experimental evaluation on malware samples from the Drebin dataset, where we obtain a classification accuracy of 82%, proving that our methodology achieves an accuracy comparable to that of DroidScribe. Furthermore, we make the software we developed publicly available, to ease the reproducibility of our results.
Large software platforms (e.g., mobile app stores, social media, email service providers) must ensure that files on their platform do not contain malicious code. Platform hosts use security tools to analyze those files for potential malware. However, given the expensive runtimes of tools coupled with the large number of exchanged files, platforms are not able to run all tools on every incoming file. Moreover, malicious parties look to find gaps in the coverage of the analysis tools, and exchange files containing malware that exploits these vulnerabilities. To address this problem, we present a novel approach that models the relationship between malicious parties and the security analyst as a leader-follower Stackelberg security game. To estimate the parameters of our model, we have combined the information from the VirusTotal dataset with the more detailed reports from the National Vulnerability Database. Compared to a set of natural baselines, we show that our model computes an optimal randomization over sets of available security analysis tools.
The growing adoption of IoT devices in our daily life is engendering a data deluge, mostly private information that needs careful maintenance and secure storage system to ensure data integrity and protection. Also, the prodigious IoT ecosystem has pr ovided users with opportunities to automate systems by interconnecting their devices and other services with rule-based programs. The cloud services that are used to store and process sensitive IoT data turn out to be vulnerable to outside threats. Hence, sensitive IoT data and rule-based programs need to be protected against cyberattacks. To address this important challenge, in this paper, we propose a framework to maintain confidentiality and integrity of IoT data and rule-based program execution. We design the framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, and end-to-end data encryption mechanism. We evaluate the framework by executing rule-based programs in the SGX securely with both simulated and real IoT device data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا