ترغب بنشر مسار تعليمي؟ اضغط هنا

A collimated beam projector for precise telescope calibration

59   0   0.0 ( 0 )
 نشر من قبل Michael Coughlin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The precise determination of the instrumental response function versus wavelength is a central ingredient in contemporary photometric calibration strategies. This typically entails propagating narrowband illumination through the system pupil, and comparing the detected photon rate across the focal plane to the amount of incident light as measured by a calibrated photodiode. However, stray light effects and reflections/ghosting (especially on the edges of filter passbands) in the optical train constitute a major source of systematic uncertainty when using a flat-field screen as the illumination source. A collimated beam projector that projects a mask onto the focal plane of the instrument can distinguish focusing light paths from stray and scattered light, allowing for a precise determination of instrumental throughput. This paper describes the conceptual design of such a system, outlines its merits, and presents results from a prototype system used with the Dark Energy Camera wide field imager on the 4-meter Blanco telescope. A calibration scheme that blends results from flat-field images with collimated beam projector data to obtain the equivalent of an illumination correction at high spectral and angular resolution is also presented. In addition to providing a precise system throughput calibration, by monitoring the evolution of the intensity and behaviour of the ghosts in the optical system, the collimated beam projector can be used to track the evolution of the filter transmission properties and various anti-reflective coatings in the optical system.



قيم البحث

اقرأ أيضاً

The Chinese Space Station Telescope (CSST) spectroscopic survey aims to deliver high-quality low-resolution ($R > 200$) slitless spectra for hundreds of millions of targets down to a limiting magnitude of about 21 mag, distributed within a large surv ey area (17500 deg$^2$) and covering a wide wavelength range (255-1000 nm by 3 bands GU, GV, and GI). As slitless spectroscopy precludes the usage of wavelength calibration lamps, wavelength calibration is one of the most challenging issues in the reduction of slitless spectra, yet it plays a key role in measuring precise radial velocities of stars and redshifts of galaxies. In this work, we propose a star-based method that can monitor and correct for possible errors in the CSST wavelength calibration using normal scientific observations, taking advantage of the facts that i) there are about ten million stars with reliable radial velocities now available thanks to spectroscopic surveys like LAMOST, ii) the large field of view of CSST enables efficient observations of such stars in a short period of time, and iii) radial velocities of such stars can be reliably measured using only a narrow segment of CSST spectra. We demonstrate that it is possible to achieve a wavelength calibration precision of a few $mathrm{km},mathrm{s}^{-1}$ for the GU band, and about 10 to 20 $mathrm{km},mathrm{s}^{-1}$ for the GV and GI bands, with only a few hundred velocity standard stars. Implementations of the method to other surveys are also discussed.
We performed photometric calibration of the PhotoMultiplier Tube (PMT) and readout electronics used for the new fluorescence detectors of the Telescope Array (TA) experiment using Rayleigh scattered photons from a pulsed nitrogen laser beam. The expe rimental setup, measurement procedure, and results of calibration are described. The total systematic uncertainty of the calibration is estimated to be 7.2%. An additional uncertainty of 3.7% is introduced by the transport of the calibrated PMTs from the laboratory to the TA experimental site.
Pointing calibration is an offline correction applied in order to obtain the true pointing direction of a telescope. The Cherenkov Telescope Array (CTA) aims to have the precision to determine the position of point-like as well as slightly extended s ources, with the goal of systematic errors less than 7 arc seconds in space angle. This poster describes the pointing calibration concept being developed for the CTA Medium Size Telescope (MST) prototype at Berlin-Adlershof, showing test results and preliminary measurements. The MST pointing calibration method uses two CCD cameras, mounted on the telescope dish, to determine the true pointing of the telescope. The Lid CCD is aligned to the optical axis of the telescope, calibrated with LEDs on the dummy gamma-camera lid; the Sky CCD is pre-aligned to the Lid CCD and the transformation between the Sky and Lid CCD camera fields of view is precisely modelled with images from special pointing runs which are also used to determine the pointing model. During source tracking, the CCD cameras record images which are analysed offline using software tools including Astrometry.net to determine the true pointing coordinates.
97 - M. Doro , M. Gaug , O. Blanch 2013
The current generation of Cherenkov telescopes is mainly limited in their gamma-ray energy and flux reconstruction by uncertainties in the determination of atmospheric parameters. The Cherenkov Telescope Array (CTA) aims to provide high-precision dat a extending the duty cycle as much as possible. To reach this goal, it is necessary to continuously and precisely monitor the atmosphere by means of remote-sensing devices, which are able to provide altitude-resolved and wavelength-dependent extinction factors, sensitive up to the tropopause and higher. Raman LIDARs are currently the best suited technology to achieve this goal with one single instrument. However, the synergy with other instruments like radiometers, solar and stellar photometers, all-sky cameras, and possibly radio-sondes is desirable in order to provide more precise and accurate results, and allows for weather forecasts and now-casts. In this contribution, we will discuss the need and features of such multifaceted atmospheric calibration systems.
GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint objects. We describe the wide range of science that will be tackled with this instrument, highlighting the unique capabilities of the VLTI in combination with GRAVITY. The most prominent goal is to observe highly relativistic motions of matter close to the event horizon of Sgr A*, the massive black hole at center of the Milky Way. We present the preliminary design that fulfils the requirements that follow from the key science drivers: It includes an integrated optics, 4-telescope, dual feed beam combiner operated in a cryogenic vessel; near-infrared wavefrontsensing adaptive optics; fringe-tracking on secondary sources within the field of view of the VLTI and a novel metrology concept. Simulations show that 10 {mu}as astrometry within few minutes is feasible for a source with a magnitude of mK = 15 like Sgr A*, given the availability of suitable phase reference sources (mK = 10). Using the same setup, imaging of mK = 18 stellar sources in the interferometric field of view is possible, assuming a full night of observations and the corresponding UV coverage of the VLTI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا