ﻻ يوجد ملخص باللغة العربية
We provide a novel perspective on regularity as a property of representations of the Weyl algebra. In Part I, we critiqued a proposal by Halvorson [2004, Complementarity of representations in quantum mechanics, Studies in History and Philosophy of Modern Physics 35(1), pp. 45--56], who advocates for the use of the non-regular position and momentum representations of the Weyl algebra. Halvorson argues that the existence of these non-regular representations demonstrates that a quantum mechanical particle can have definite values for position or momentum, contrary to a widespread view. In this sequel, we propose a justification for focusing on regular representations, pace Halvorson, by drawing on algebraic methods.
We provide a novel perspective on regularity as a property of representations of the Weyl algebra. We first critique a proposal by Halvorson [2004, Complementarity of representations in quantum mechanics, Studies in History and Philosophy of Modern P
Randomness is an unavoidable notion in discussing quantum physics, and this may trigger the curiosity to know more of its cultural history. This text is an invitation to explore the position on the matter of Thomas Aquinas, one of the most prominent
Sommerfeld called the first part of the second law to be the entropy axiom, which is about the existence of the state function entropy. It was usually thought that the second part of the second law, which is about the non-decreasing nature of entropy
In 1717 Halley compared contemporaneous measurements of the latitudes of four stars with earlier measurements by ancient Greek astronomers and by Brahe, and from the differences concluded that these four stars showed proper motion. An analysis with m
In recent years philosophers of science have explored categorical equivalence as a promising criterion for when two (physical) theories are equivalent. On the one hand, philosophers have presented several examples of theories whose relationships seem