ترغب بنشر مسار تعليمي؟ اضغط هنا

New Science, New Media: An Assessment of the Online Education and Public Outreach Initiatives of The Dark Energy Survey

125   0   0.0 ( 0 )
 نشر من قبل Rachel Wolf
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As large-scale international collaborations become the standard for astronomy research, a wealth of opportunities have emerged to create innovative education and public outreach (EPO) programming. In the past two decades, large collaborations have focused EPO strategies around published data products. Newer collaborations have begun to explore other avenues of public engagement before and after data are made available. We present a case study of the online EPO program of The Dark Energy Survey, currently one of the largest international astronomy collaborations actively taking data. DES EPO is unique at this scale in astronomy, as far as we are aware, as it evolved organically from scientists passion for EPO and is entirely organized and implemented by the volunteer efforts of collaboration scientists. We summarize the strategy and implementation of eight EPO initiatives. For content distributed via social media, we present reach and user statistics over the 2016 calendar year. DES EPO online products reached ~2,500 users per post, and 94% of these users indicate a predisposition to science-related interests. We find no obvious correlation between post type and post reach, with the most popular posts featuring the intersections of science and art and/or popular culture. We conclude that one key issue of the online DES EPO program was designing material which would inspire new interest in science. The greatest difficulty of the online DES EPO program was sustaining scientist participation and collaboration support; the most successful programs are those which capitalized on the hobbies of participating scientists. We present statistics and recommendations, along with observations from individual experience, as a potentially instructive resource for scientists or EPO professionals interested in organizing EPO programs and partnerships for large science collaborations or organizations.

قيم البحث

اقرأ أيضاً

Over the past two decades, I have been actively involved in teaching astronomy and astrophysics to Chicago Public School (CPS) students and their teachers, in collaboration with various groups as well as by myself. Valuable resources that we have cre ated for schools include the Multiwavelength Astronomy Website, with modules for infrared, optical, ultraviolet, X-ray and gamma-ray astronomy. The content of each lesson is derived from interviews with scientists, archived oral histories, and/or memoirs. Lessons are evaluated by a science educator and at least one subject matter expert before being produced for the web. They are supplemented by NASA media, archival material from the University of Chicago Library and other archives, and participant contributed photographs, light curves, and spectra. Summer programs provided training to CPS teachers to use the resources in their classrooms. Currently, I lead the Chicago Area Research Mentoring (CHARM) initiative. In the past academic year I worked with a class of 17 diverse 11th grade honors students at the University of Chicago Charter School, Woodlawn. Through frequent lectures ($sim$ every 4 weeks), these students were exposed to astrophysical topics and concepts not normally covered in a school curriculum. CHARM aims to develop the students critical thinking, introduce them to astrophysical research methods and techniques, and prepare them for a career in science, technology, engineering and mathematics (STEM), particularly a research-oriented one. In this article, I highlight some projects, educational resources, results achieved, and lessons learned along the way.
Science is an inherently quantitative endeavor, and general education science courses are taken by a majority of college students. As such, they are a powerful venue for advancing students skills and attitudes toward mathematics. This article reports on the development and validation of the Quantitative Reasoning for College Science (QuaRCS) Assessment, a numeracy assessment instrument designed for college-level general education science students. It has been administered to more than four thousand students over eight semesters of refinement. We show that the QuaRCS is able to distinguish varying levels of quantitative literacy and present performance statistics for both individual items and the instrument as a whole. Responses from a survey of forty-eight Astronomy and Mathematics educators show that these two groups share views regarding which quantitative skills are most important in the contexts of science literacy and educated citizenship, and the skills assessed with the QuaRCS are drawn from these rankings. The fully-developed QuaRCS assessment was administered to nearly two thousand students in nineteen general education science courses and one STEM major course in early 2015, and results reveal that the instrument is valid for both populations.
Although online education has become a viable and major component of higher education in many fields, its employment in engineering disciplines has been limited. COVID-19 pandemic compelled the global and abrupt conversion of conventional face-to-fac e instruction to the online format. The negative impact of such sudden change is undeniable. Urgent and careful planning is needed to mitigate pandemic negative effects on engineering education, especially for vulnerable, disadvantaged, and underrepresented students who have to deal with additional challenges (e.g. digital equity gap). To enhance engineering online instruction during the pandemic era, we conducted an observational study at California State University, Long Beach (a minority-serving institution). 110 faculty and 627 students from six engineering departments participated in our surveys and answered quantitative and qualitative questions to highlight the challenges they experienced during the online instruction in Spring 2020. In this work, we present the results of these surveys in detail and propose solutions to address the identified issues including logistical, technical, learning/teaching challenges, assessment methods, and hands-on training. As the pandemic continues, sharing these results with other educators can help with more effective planning and choice of best practices to improve the online engineering education during COVID-19 and beyond.
211 - Sun Kwok 2018
The traditional university science curriculum was designed to train specialists in specific disciplines. However, in universities all over the world, science students are going into increasingly diverse careers and the current model does not fit thei r needs. Advances in technology also make certain modes of learning obsolete. In the last 10 years, the Faculty of Science of the University of Hong Kong has undertaken major curriculum reforms. A sequence of science foundation courses required of all incoming science students are designed to teach science in an integrated manner, and to emphasize the concepts and utilities, not computational techniques, of mathematics. A number of non-discipline specific common core courses have been developed to broaden students awareness of the relevance of science to society and the interdisciplinary nature of science. By putting the emphasis on the scientific process rather than the outcome, students are taught how to identify, formulate, and solve diverse problems.
58 - M. Boer 2001
The TAROT telescope has for primary goal the search for the prompt optical counterpart of Cosmic Gamma-Ray Bursts. It is a completely autonomous 25cm telescope installed near Nice (France), able to point any location of the sky within 1-2 seconds. Th e control, scheduling, and data processing activities are completely automated, so the instrument is completely autonomous. In addition to its un-manned modes, we added recently the possibility to remotely control the telescope, as a request of the Hands-On Universe (HOU) program for exchange of time within automatic telescopes for the education and public outreach. To this purpose we developed a simple control interface. A webcam was installed to visualize the telescope. Access to the data is possible through a web interface. The images can be processed by the HOU software, a program specially suited for use within the classroom. We experienced these feature during the open days of the University of California Berkeley and the Astronomy Festival of Fleurance (France). We plan a regular use for an astronomy course of the Museum of Tokyo, as well as for French schools. Not only does Hands-On TAROT gives the general public an access to professional astronomy, but it is also a more general tool to demonstrate the use of a complex automated system, the techniques of data processing and automation. Last but not least, through the use of telescopes located in many countries over the globe, a form of powerful and genuine cooperation between teachers and children from various countries is promoted, with a clear educational goal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا