ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Scale Dynamic Predictive Regressions

400   0   0.0 ( 0 )
 نشر من قبل Kenichiro McAlinn
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a novel decouple-recouple dynamic predictive strategy and contribute to the literature on forecasting and economic decision making in a data-rich environment. Under this framework, clusters of predictors generate different latent states in the form of predictive densities that are later synthesized within an implied time-varying latent factor model. As a result, the latent inter-dependencies across predictive densities and biases are sequentially learned and corrected. Unlike sparse modeling and variable selection procedures, we do not assume a priori that there is a given subset of active predictors, which characterize the predictive density of a quantity of interest. We test our procedure by investigating the predictive content of a large set of financial ratios and macroeconomic variables on both the equity premium across different industries and the inflation rate in the U.S., two contexts of topical interest in finance and macroeconomics. We find that our predictive synthesis framework generates both statistically and economically significant out-of-sample benefits while maintaining interpretability of the forecasting variables. In addition, the main empirical results highlight that our proposed framework outperforms both LASSO-type shrinkage regressions, factor based dimension reduction, sequential variable selection, and equal-weighted linear pooling methodologies.

قيم البحث

اقرأ أيضاً

This paper considers inference on fixed effects in a linear regression model estimated from network data. An important special case of our setup is the two-way regression model. This is a workhorse technique in the analysis of matched data sets, such as employer-employee or student-teacher panel data. We formalize how the structure of the network affects the accuracy with which the fixed effects can be estimated. This allows us to derive sufficient conditions on the network for consistent estimation and asymptotically-valid inference to be possible. Estimation of moments is also considered. We allow for general networks and our setup covers both the dense and sparse case. We provide numerical results for the estimation of teacher value-added models and regressions with occupational dummies.
Regression models with crossed random effect errors can be very expensive to compute. The cost of both generalized least squares and Gibbs sampling can easily grow as $N^{3/2}$ (or worse) for $N$ observations. Papaspiliopoulos et al. (2020) present a collapsed Gibbs sampler that costs $O(N)$, but under an extremely stringent sampling model. We propose a backfitting algorithm to compute a generalized least squares estimate and prove that it costs $O(N)$. A critical part of the proof is in ensuring that the number of iterations required is $O(1)$ which follows from keeping a certain matrix norm below $1-delta$ for some $delta>0$. Our conditions are greatly relaxed compared to those for the collapsed Gibbs sampler, though still strict. Empirically, the backfitting algorithm has a norm below $1-delta$ under conditions that are less strict than those in our assumptions. We illustrate the new algorithm on a ratings data set from Stitch Fix.
For regulatory and interpretability reasons, logistic regression is still widely used. To improve prediction accuracy and interpretability, a preprocessing step quantizing both continuous and categorical data is usually performed: continuous features are discretized and, if numerous, levels of categorical features are grouped. An even better predictive accuracy can be reached by embedding this quantization estimation step directly into the predictive estimation step itself. But doing so, the predictive loss has to be optimized on a huge set. To overcome this difficulty, we introduce a specific two-step optimization strategy: first, the optimization problem is relaxed by approximating discontinuous quantization functions by smooth functions; second, the resulting relaxed optimization problem is solved via a particular neural network. The good performances of this approach, which we call glmdisc, are illustrated on simulated and real data from the UCI library and Credit Agricole Consumer Finance (a major European historic player in the consumer credit market).
158 - Zhaoxing Gao , Ruey S. Tsay 2021
This paper proposes a hierarchical approximate-factor approach to analyzing high-dimensional, large-scale heterogeneous time series data using distributed computing. The new method employs a multiple-fold dimension reduction procedure using Principal Component Analysis (PCA) and shows great promises for modeling large-scale data that cannot be stored nor analyzed by a single machine. Each computer at the basic level performs a PCA to extract common factors among the time series assigned to it and transfers those factors to one and only one node of the second level. Each 2nd-level computer collects the common factors from its subordinates and performs another PCA to select the 2nd-level common factors. This process is repeated until the central server is reached, which collects common factors from its direct subordinates and performs a final PCA to select the global common factors. The noise terms of the 2nd-level approximate factor model are the unique common factors of the 1st-level clusters. We focus on the case of 2 levels in our theoretical derivations, but the idea can easily be generalized to any finite number of hierarchies. We discuss some clustering methods when the group memberships are unknown and introduce a new diffusion index approach to forecasting. We further extend the analysis to unit-root nonstationary time series. Asymptotic properties of the proposed method are derived for the diverging dimension of the data in each computing unit and the sample size $T$. We use both simulated data and real examples to assess the performance of the proposed method in finite samples, and compare our method with the commonly used ones in the literature concerning the forecastability of extracted factors.
We analyze the combination of multiple predictive distributions for time series data when all forecasts are misspecified. We show that a specific dynamic form of Bayesian predictive synthesis -- a general and coherent Bayesian framework for ensemble methods -- produces exact minimax predictive densities with regard to Kullback-Leibler loss, providing theoretical support for finite sample predictive performance over existing ensemble methods. A simulation study that highlights this theoretical result is presented, showing that dynamic Bayesian predictive synthesis is superior to other ensemble methods using multiple metrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا