ترغب بنشر مسار تعليمي؟ اضغط هنا

Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures

38   0   0.0 ( 0 )
 نشر من قبل Nick Ruebner Papior
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory (DFT) calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar <it>sp2</it> (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.

قيم البحث

اقرأ أيضاً

It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of gaussian basis sets, commonly used in first-principles codes. The possi ble usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.
Nonlinear electrical properties, such as negative differential resistance (NDR), are essential in numerous electrical circuits, including memristors. Several physical origins have been proposed to lead to the NDR phenomena in semiconductor devices in the last more than half a century. Here, we report NDR behavior formation in randomly oriented graphene-like nanostructures up to 37 K and high on-current density up to 10^5 A/cm^2. Our modeling of the current-voltage characteristics, including the self-heating effects, suggests that strong temperature dependence of the low-bias resistance is responsible for the nonlinear electrical behavior. Our findings open opportunities for the practical realization of the on-demand NDR behavior in nanostructures of 2D and 3D material-based devices via heat management in the conducting films and the underlying substrates.
We report our recent numerical study on the effects of dephasing on a perfectly conducting channel (PCC), its presence believed to be dominant in the transport characteristics of a zigzag graphene nanoribbons (GNR) and of a metallic carbon nanotubes (CNT). Our data confirms an earlier prediction that a PCC in GNR exhibits a peculiar robustness against dephasing, in contrast to that of the CNT. By studying the behavior of the conductance as a function of the systems length we show that dephasing destroys the PCC in CNT, whereas it stabilizes the PCC in GNR. Such opposing responses of the PCC against dephasing stem from a different nature of the PCC in these systems.
Probing techniques with spatial resolution have the potential to lead to a better understanding of the microscopic physical processes and to novel routes for manipulating nanostructures. We present scanning-gate images of a graphene quantum dot which is coupled to source and drain via two constrictions. We image and locate conductance resonances of the quantum dot in the Coulomb-blockade regime as well as resonances of localized states in the constrictions in real space.
Recent studies have demonstrated that skyrmionic states can be the ground state in thin-film FeGe disk nanostructures in the absence of a stabilising applied magnetic field. In this work, we advance this understanding by investigating to what extent this stabilisation of skyrmionic structures through confinement exists in geometries that do not match the cylindrical symmetry of the skyrmion -- such as as squares and triangles. Using simulation, we show that skyrmionic states can form the ground state for a range of system sizes in both triangular and square-shaped FeGe nanostructures of $10,text{nm}$ thickness in the absence of an applied field. We further provide data to assist in the experimental verification of our prediction; to imitate an experiment where the system is saturated with a strong applied field before the field is removed, we compute the time evolution and show the final equilibrium configuration of magnetization fields, starting from a uniform alignment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا