ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of Fano resonance in single molecule electroluminescence induced by a scanning tunneling microscope

128   0   0.0 ( 0 )
 نشر من قبل Jing-Tao Lu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling between molecular exciton and gap plasmons plays a key role in single molecular electroluminescence induced by a scanning tunneling microscope (STM). But it has been difficult to clarify the complex experimental phenomena. By employing the nonequilibrium Greens function method, we propose a general theoretical model to understand the light emission spectrum from single molecule and gap plasmons from an energy transport point of view. The coherent interaction between gap plasmons and molecular exciton leads to a prominent Fano resonance in the emission spectrum. We analyze the dependence of the Fano line shape on the system parameters, based on which we provide a unified account of several recent experimental observations. Moreover, we highlight the effect of the tip-molecule electronic coupling on the spectrum, which has hitherto not been considered.



قيم البحث

اقرأ أيضاً

The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasm on cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture.
The electroluminescence of a polythiophene wire suspended between two metallic electrodes is probed using a scanning tunneling microscope. Under positive sample voltage, the spectral and voltage dependencies of the emitted light are consistent with t he fluorescence of the wire junction mediated by localized plasmons. This emission is strongly attenuated for the opposite polarity. Both emission mechanism and polarity dependence are similar to what occurs in organic light emitting diodes (OLED) but at the level of a single molecular wire.
Combining electron paramagnetic resonance (EPR) with scanning tunneling microscopy (STM) enables detailed insight into the interactions and magnetic properties of single atoms on surfaces. A requirement for EPR-STM is the efficient coupling of microw ave excitations to the tunnel junction. Here, we achieve a coupling efficiency of the order of unity by using a radiofrequency antenna placed parallel to the STM tip, which we interpret using a simple capacitive-coupling model. We further demonstrate the possibility to perform EPR-STM routinely above 4 K using amplitude as well as frequency modulation of the radiofrequency excitation. We directly compare different acquisition modes on hydrogenated Ti atoms and highlight the advantages of frequency and magnetic field sweeps as well as amplitude and frequency modulation in order to maximize the EPR signal. The possibility to tune the microwave-excitation scheme and to perform EPR-STM at relatively high temperature and high power opens this technique to a broad range of experiments, ranging from pulsed EPR spectroscopy to coherent spin manipulation of single atom ensembles.
Recent advances in scanning probe techniques rely on the chemical functionalization of the probe-tip termination by a single molecule. The success of this approach opens the tantalizing prospect of introducing spin sensitivity through the functionali zation by a magnetic molecule. Here, we use a nickelocene-terminated tip (Nc-tip), which offers the possibility of producing spin excitations on the tip apex of a scanning tunneling microscope (STM). We show that when the Nc-tip is a hundred pm away from point contact with a surface-supported object, magnetic effects may be probed through changes in the spin excitation spectrum of nickelocene. We use this detection scheme to simultaneously determine the exchange field and the spin polarization of the sample with atomic-scale resolution. Our findings demonstrate that the Nc-tip is a powerful probe for investigating surface magnetism with STM, from single magnetic atoms to surfaces.
388 - Guohui Dong , Yining You , 2020
The scanning-tunneling-microscope-induced luminescence emerges recently as an incisive tool to measure the molecular properties down to the single-molecule level. The rapid experimental progress is far ahead of the theoretical effort to understand th e observed phenomena. Such incompetence leads to a significant difficulty in quantitatively assigning the observed feature of the fluorescence spectrum to the structure and dynamics of a single molecule. This letter is devoted to reveal the microscopic origin of the molecular excitation via inelastic scattering of the tunneling electrons in scanning tunneling microscope. The current theory explains the observed large photon counting asymmetry between the molecular luminescence intensity at positive and negative bias voltage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا