ﻻ يوجد ملخص باللغة العربية
Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range $approx 10$-60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free-free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the power-law opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ($lesssim 1$%). The most natural explanation for AME is rotational emission from ultra-small dust grains (spinning dust), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies ($gtrsim 50$ GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.
In this chapter, we will outline the scientific motivation for studying Anomalous Microwave Emission (AME) with the SKA. AME is thought to be due to electric dipole radiation from small spinning dust grains, although thermal fluctuations of magnetic
The dust feature G159.6--18.5 in the Perseus region has previously been observed with the COSMOSOMAS experiment citep{Watson:05} on angular scales of $approx$ 1$^{circ}$, and was found to exhibit anomalous microwave emission. We present new observati
The anomalous microwave emission (AME) still lacks a conclusive explanation. This excess of emission, roughly between 10 and 50 GHz, tends to defy attempts to explain it as synchrotron or free-free emission. The overlap with frequencies important for
We present observations of the known anomalous microwave emission region, G159.6-18.5, in the Perseus molecular cloud at 16 GHz performed with the Arcminute Microkelvin Imager Small Array. These are the highest angular resolution observations of G159
The detection of an excess of emission at microwave frequencies with respect to the predicted free-free emission has been reported for several Galactic HII regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tenta