ترغب بنشر مسار تعليمي؟ اضغط هنا

The Environments of the Most Energetic Gamma-Ray Bursts

49   0   0.0 ( 0 )
 نشر من قبل Ben Gompertz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the properties of a sample of long gamma-ray bursts (LGRBs) detected by the Fermi satellite that have a spectroscopic redshift and good follow-up coverage at both X-ray and optical/nIR wavelengths. The evolution of LGRB afterglows depends on the density profile of the external medium, enabling us to separate wind or ISM-like environments based on the observations. We do this by identifying the environment that provides the best agreement between estimates of $p$, the index of the underlying power-law distribution of electron energies, as determined by the behavior of the afterglow in different spectral/temporal regimes. At 11 rest-frame hours after trigger, we find a roughly even split between ISM-like and wind-like environments. We further find a 2$sigma$ separation in the prompt emission energy distributions of wind-like and ISM-like bursts. We investigate the underlying physical parameters of the shock, and calculate the (degenerate) product of density and magnetic field energy ($epsilon_B$). We show that $epsilon_B$ must be $ll 10^{-2}$ to avoid implied densities comparable to the intergalactic medium. Finally, we find that the most precisely constrained observations disagree on $p$ by more than would be expected based on observational errors alone. This suggests additional sources of error that are not incorporated in the standard afterglow theory. For the first time, we provide a measurement of this intrinsic error which can be represented as an error in the estimate of $p$ of magnitude $0.25 pm 0.04$. When this error is included in the fits, the number of LGRBs with an identified environment drops substantially, but the equal division between the two types remains.



قيم البحث

اقرأ أيضاً

We study the time-resolved spectra of eight GRBs observed by Fermi GBM in its first five years of mission, with 1 keV - 1 MeV fluence $f>1.0times10^{-4}$ erg cm$^{-2}$ and signal-to-noise level $text{S/N}geq10.0$ above 900 keV. We aim to constrain in detail the spectral properties of GRB prompt emission on a time-resolved basis and to discuss the theoretical implications of the fitting results in the context of various prompt emission models. We perform time-resolved spectral analysis using a variable temporal binning technique according to optimal S/N criteria, resulting in a total of 299 time-resolved spectra. We fit the Band function to all spectra and obtain the distributions for the low-energy power-law index $alpha$, the high-energy power-law index $beta$, the peak energy in the observed $ u F_ u$ spectrum $E_text{p}$, and the difference between the low- and high-energy power-law indices $Delta s=alpha-beta$. Using the distributions of $Delta s$ and $beta$, the electron population index $p$ is found to be consistent with the moderately fast scenario which fast- and slow-cooling scenarios cannot be distinguished. We also apply a physically motivated synchrotron model, which is a triple power-law with constrained power-law indices and a blackbody component, to test for consistency with a synchrotron origin for the prompt emission and obtain the distributions for the two break energies $E_text{b,1}$ and $E_text{b,2}$, the middle segment power-law index $beta$, and the Planck function temperature $kT$. A synchrotron model is found consistent with the majority of time-resolved spectra for these eight energetic Fermi GBM bursts with good high-energy photon statistics, as long as both the cooling and injection break are included and the leftmost spectral slope is lifted either by inclusion of a thermal component or when an evolving magnetic field is accounted for.
We present broadband (radio, optical, and X-ray) light curves and spectra of the afterglows of four long-duration gamma-ray bursts (GRBs 090323, 090328, 090902B, and 090926A) detected by the Gamma-Ray Burst Monitor (GBM) and Large Area Telescope (LAT ) instruments on the Fermi satellite. With its wide spectral bandpass, extending to GeV energies, Fermi is sensitive to GRBs with very large isotropic energy releases (10e54 erg). Although rare, these events are particularly important for testing GRB central-engine models. When combined with spectroscopic redshifts, our afterglow data for these four events are able to constrain jet collimation angles, the density structure of the circumburst medium, and both the true radiated energy release and the kinetic energy of the outflows. In agreement with our earlier work, we find that the relativistic energy budget of at least one of these events (GRB 090926A) exceeds the canonical value of 10e51 erg by an order of magnitude. Such energies pose a severe challenge for models in which the GRB is powered by a magnetar or neutrino-driven collapsar, but remain compatible with theoretical expectations for magneto-hydrodynamical (MHD) collapsar models. Our jet opening angles (theta) are similar to those found for pre-Fermi GRBs, but the large initial Lorentz factors (Gamma_0) inferred from the detection of GeV photons imply theta Gamma_0 ~ 70-90, values which are above those predicted in MHD models of jet acceleration. Finally, we find that these Fermi-LAT events preferentially occur in a low-density circumburst environment, and we speculate that this might result from the lower mass-loss rates of their lower-metallicity progenitor stars. Future studies of Fermi-LAT afterglows in the radio with the order-of-magnitude improvement in sensitivity offered by the EVLA should definitively establish the relativistic energy budgets of these events.
The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Though they play a key role in cultivating the cosmological environment and/or enabling our studies of it, there is still much we do not know about AGNs and GRBs, particularly the avenue in which and through which they supply radiation and energetic particles, namely their jets. This White Paper is the second of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. The focus of this white paper is active galactic nuclei and gamma-ray bursts.
Gamma-ray bursts (GRBs) are some of the most extreme events in the Universe. As well as providing a natural laboratory for investigating fundamental physical processes, they might trace the cosmic star formation rate up to extreme redshifts and probe the composition of the intergalactic medium over most of the Universes history. Radio observations of GRBs play a key part in determining their physical properties, but currently they are largely limited to follow-up observations of $gamma$-ray-detected objects. The SKA will significantly increase our ability to study GRB afterglows, following up several hundred objects in the high frequency bands already in the early science implementation of the telescope. SKA1-MID Bands 4 (4 GHz) and 5 (9.2 GHz) will be particularly suited to the detection of these transient phenomena. The SKA will trace the peak of the emission, sampling the thick-to-thin transition of the evolving spectrum, and follow-up the afterglow down to the time the ejecta slow down to non-relativistic speeds. The full SKA will be able to observe the afterglows across the non-relativistic transition, for ~25% of the whole GRB population. This will allow us to get a significant insight into the true energy budget of GRBs, probe their surrounding density profile, and the shock microphysics. The SKA will also be able to routinely detect the elusive orphan afterglow emission, from the population of GRBs whose jets are not pointed towards the Earth. We expect that a deep all-sky survey such as SKA1-SUR will see around 300 orphan afterglows every week. We predict these detection to be >1000 when the full SKA telescope will be operational.
Gamma-ray bursts (GRBs) were first detected thanks to their prompt emission, which was the only information available for decades. In 2010, while the high-energy prompt emission remains the main tool for the detection and the first localization of GR B sources, our understanding of this crucial phase of GRBs has made great progress. We discuss some recent advances in this field, like the occasional detection of the prompt emission at all wavelengths, from optical to GeV; the existence of sub-luminous GRBs; the attempts to standardize GRBs; and the possible detection of polarization in two very bright GRBs. Despite these advances, tantalizing observational and theoretical challenges still exist, concerning the detection of the faintest GRBs, the panchromatic observation of GRBs from their very beginning, the origin of the prompt emission, or the understanding of the physics at work during this phase. Significant progress on this last topic is expected with SVOM thanks to the observation of dozens of GRBs from optical to MeV during the burst itself, and the measure of the redshift for the majority of them. SVOM will also change our view of the prompt GRB phase in another way. Within a few years, the sensitivity of sky surveys at optical and radio frequencies, and outside the electromagnetic domain in gravitational waves or neutrinos, will allow them to detect several new types of transient signals, and SVOM will be uniquely suited to identify which of these transients are associated with GRBs. This radically novel look at GRBs may elucidate the complex physics producing these bright flashes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا