ﻻ يوجد ملخص باللغة العربية
TIFR Near Infrared Imaging Camera-II is a closed-cycle Helium cryo-cooled imaging camera equipped with a Raytheon 512 x 512 pixels InSb Aladdin III Quadrant focal plane array having sensitivity to photons in the 1-5 microns wavelength band. In this paper, we present the performance of the camera on the newly installed 3.6-m Devasthal Optical Telescope (DOT) based on the calibration observations carried out during 2017 May 11-14 and 2017 October 7-31. After the preliminary characterization, the camera has been released to the Indian and Belgian astronomical community for science observations since 2017 May. The camera offers a field-of-view of ~86.5 arcsec x 86.5 arcsec on the DOT with a pixel scale of 0.169 arcsec. The seeing at the telescope site in the near-infrared bands is typically sub-arcsecond with the best seeing of ~0.45 arcsec realized in the near-infrared K-band on 2017 October 16. The camera is found to be capable of deep observations in the J, H and K bands comparable to other 4-m class telescopes available world-wide. Another highlight of this camera is the observational capability for sources up to Wide-field Infrared Survey Explorer (WISE) W1-band (3.4 microns) magnitudes of 9.2 in the narrow L-band (nbL; lambda_{cen} ~3.59 microns). Hence, the camera could be a good complementary instrument to observe the bright nbL-band sources that are saturated in the Spitzer-Infrared Array Camera ([3.6] <= 7.92 mag) and the WISE W1-band ([3.4] <= 8.1 mag). Sources with strong polycyclic aromatic hydrocarbon (PAH) emission at 3.3 microns are also detected. Details of the observations and estimated parameters are presented in this paper.
The recently commissioned 3.6-m Devasthal optical telescope has been used for various tests and science observations using three main instruments, namely, a charge-coupled device camera, a near-infrared camera, and an optical imager-cum-spectrograph.
The 3.6 meter Indo-Belgian Devasthal optical telescope (DOT) has been used for optical and near-infrared (NIR) observations of celestial objects. The telescope has detected stars of B = 24.5+-0.2; R = 24.6+-0.12 and g = 25.2+-0.2 mag in exposure time
Devasthal Optical Telescope Integral Field Spectrograph (DOTIFS) is a new multi-object Integral Field Spectrograph (IFS) being designed and fabricated by the Inter-University Center for Astronomy and Astrophysics (IUCAA), Pune, India, for the Cassegr
Indias largest 3.6 m aperture optical telescope has been successfully installed in the central Himalayan region at Devasthal, Nainital district, Uttarakhand. The primary mirror of the telescope uses the active optics technology. The back-end instrume
We have developed a near-infrared camera called ANIR (Atacama Near-InfraRed camera) for the University of Tokyo Atacama Observatory 1.0m telescope (miniTAO) installed at the summit of Cerro Chajnantor (5640 m above sea level) in northern Chile. The c