ﻻ يوجد ملخص باللغة العربية
A new method for the generation of a train of pulses from a single high-energy, ultra short pulse is presented, suited for Resonant Multi-Pulse Ionization injection. The method is based on different transverse portion of the pulse being delayed by a mask sectioned in concentric zones with different thicknesses, in order to deliver multiple laser pulses. The mask is placed right before the last focusing parabola. A hole in the middle of the mask lets part of the original pulse to pass through to drive electron injection. In this paper a full numerical modelling of this scheme is presented. In particular we discuss the spatial and temporal profile of the pulses emerging from the mask and how they are related to the radius and thickness of each section.
An enhanced ionization injection scheme using a tightly focused laser pulse with intensity near the ionization potential to trigger the injection process in a mismatched pre-plasma channel has been proposed and examined via multi-dimensional particle
The multi-stage technique for laser driven acceleration of electrons become a critical part of full-optical, jitter-free accelerators. Use of several independent laser drivers and shorter length plasma targets allows the stable and reproducible accel
We present methods and preliminary observations of two pulse Direct Laser Acceleration in a Laser-Driven Plasma Accelerator. This acceleration mechanism uses a second co-propagating laser pulse to overlap and further accelerate electrons in a wakefie
Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multi-dimensional particle-in-cell simulations. We find that very bright electron beams can be generated
A framework for integrating transfer matrices with particle-in-cell simulations is developed for TeV staging of plasma wakefield accelerators. Using nonlinear transfer matrices in terms up to ninth order in normalized energy spread $sqrt{langledeltag