ترغب بنشر مسار تعليمي؟ اضغط هنا

Average [O II] nebular emission associated with Mg II absorbers: Dependence on Fe II absorption

433   0   0.0 ( 0 )
 نشر من قبل Ravi Joshi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of Fe II equivalent width ($W_{2600}$) and fibre size on the average luminosity of [O II]$lambdalambda$3727,3729 nebular emission associated with Mg II absorbers (at $0.55 le z le 1.3$) in the composite spectra of quasars obtained with 3 and 2 arcsec fibres in the Sloan Digital Sky Survey. We confirm the presence of strong correlations between [O II] luminosity (L$_{[rm O~II]}$) and equivalent width ($W_{2796}$) and redshift of Mg II absorbers. However, we show L$_{[rm O~II]}$ and average luminosity surface density suffers from fibre size effects. More importantly, for a given fibre size the average L$_{[rm O~II]}$ strongly depends on the equivalent width of Fe II absorption lines and found to be higher for Mg II absorbers with $R equiv$ $W_{rm 2600}/W_{rm 2796}$ $ge 0.5$. In fact, we show the observed strong correlations of L$_{[rm O~II]}$ with $W_{2796}$ and $z$ of Mg II absorbers are mainly driven by such systems. Direct [O II] detections also confirm the link between L$_{[rm O~II]}$ and $R$. Therefore, one has to pay attention to the fibre losses and dependence of redshift evolution of Mg II absorbers on $W_{2600}$ before using them as a luminosity unbiased probe of global star formation rate density. We show that the [O II] nebular emission detected in the stacked spectrum is not dominated by few direct detections (i.e., detections $ge 3 sigma$ significant level). On an average the systems with $R$ $ge 0.5$ and $W_{2796}$ $ge 2$ AA are more reddened, showing colour excess E($B-V$) $sim$ 0.02, with respect to the systems with $R$ $< 0.5$ and most likely traces the high H I column density systems.

قيم البحث

اقرأ أيضاً

We present nebular emission associated with 198 strong Mg II absorbers at 0.35 $le z le$ 1.1 in the fibre spectra of quasars from the Sloan Digital Sky Survey. Measured [O II] luminosities (L$_{[O II]}$) are typical of sub-L$^{star}$ galaxies with de rived star formation rate (uncorrected for fibre losses and dust reddening) in the range of 0.5-20 ${rm M_odot yr^{-1}}$. Typically less than $sim$ 3% of the Mg II systems with rest equivalent width, $W_{2796}$ $ge$ 2 AA, show L$_{[O II]} ge 0.3$ L$^{star}_{[O II]}$. The detection rate is found to increase with increasing $W_{2796}$ and $z$. No significant correlation is found between $W_{2796}$ and L$_{[O II]}$ even when we restrict the samples to narrow $z$-ranges. A strong correlation is seen between L$_{[O II]}$ and $z$. While this is expected from the luminosity evolution of galaxies, we show finite fibre size plays a very crucial role in this correlation. The measured nebular line ratios (like [O III]/[O II] and [O III]/H$beta$) and their $z$ evolution are consistent with those of galaxies detected in deep surveys. Based on the median stacked spectra, we infer the average metallicity (log Z $sim$8.3), ionization parameter (log $q$ $sim$7.5) and stellar mass (log (M/M$_odot$)$sim$9.3). The Mg II systems with nebular emission typically have $W_{2796}$ $ge 2$ AA, Mg II doublet ratio close to 1 and W(Fe II$lambda$2600)/$W_{2796}$ $sim 0.5$ as often seen in damped Ly$alpha$ and 21-cm absorbers at these redshifts. This is the biggest reported sample of [O II] emission from Mg II absorbers at low impact parameters ideally suited for probing various feedback processes at play in $zle 1$ galaxies.
We present a study of strong intervening absorption systems in the near-IR spectra of 31 luminous quasars at $z>5.7$. The quasar spectra were obtained with {it Gemini} GNIRS that provide continuous wavelength coverage from $sim$0.9 to $sim$2.5 $mu$m. We detect 32 strong Mg II doublet absorbers with rest-frame equivalent width $W_r$ ($lambda2796$) $>1.0$ AA at $2.2 < z < 6.0$. Each Mg II absorber is confirmed by at least two associated Fe II absorption lines in the rest-frame wavelength range of $sim 1600-2600$ AA. We find that the comoving line density ($dN/dX$) of the strong Fe II-bearing Mg II absorbers decreases towards higher redshift at $z>3$, consistent with previous studies. Compared with strong Mg II absorbers detected in damped Ly$alpha$ systems at 2 $<z<$ 4, our absorbers are potentially less saturated and show much larger rest-frame velocity widths. This suggests that the gas traced by our absorbers are potentially affected by galactic superwinds. We analyze the {it Hubble Space Telescope} near-IR images of the quasars and identify possible associated galaxies for our strong absorbers. There are a maximum of two galaxy candidates found within 5 radius of each absorber. The median F105W-band magnitude of these galaxy candidates is 24.8 mag, which is fainter than the $L^*$ galaxy luminosity at $zsim$ 4. By using our observed $dN/dX$ of strong Mg II absorbers and galaxy candidates median luminosity, we suggest that at high redshift, strong Mg II absorbers tend to have a more disturbed environment but smaller halo size than that at $z <$ 1.
We have studied a sample of 415 associated (z_ab z_em; relative velocity with respect to QSO <3000km/s) Mg II absorption systems with 1.0<=z_ab<=1.86, in the spectra of SDSS DR3 QSOs, to determine the dust content and ionization state in the absorber s. We studied the dependence of these properties on the properties of the QSOs and also, compared the properties with those of a similarly selected sample of 809 intervening systems (apparent relative velocity with respect to the QSO of >3000km/s), so as to understand their origin. From the analysis of the composite spectra, as well as from the comparison of measured equivalent widths in individual spectra, we conclude that the associated Mg II absorbers have higher apparent ionization, measured by the strength of the C IV absorption lines compared to the Mg II absorption lines, than the intervening absorbers. The ionization so measured appears to be related to apparent ejection velocity, being lower as the apparent ejection velocity is more and more positive. There is clear evidence, from the composite spectra, for SMC like dust attenuation in these systems; the 2175AA absorption feature is not present. The extinction is almost twice that observed in the similarly selected sample of intervening systems. We reconfirm that QSOs with non-zero FIRST radio flux are intrinsically redder than the QSOs with no detection in the FIRST survey. The incidence of associated Mg II systems in QSOs with non-zero FIRST radio flux is 1.7 times that in the QSOs with no detection in the FIRST survey. The associated absorbers in radio-detected QSOs which comprise about 12% of our sample, cause 3 times more reddening than the associated absorbers in radio-undetected QSOs. This excess reddening possibly suggests an intrinsic nature for the associated absorbers in radio-detected QSOs.
Both the Fe II UV emission in the 2000- 3000 A region [Fe II (UV)] and resonance emission line complex of Mg II at 2800 A are prominent features in quasar spectra. The observed Fe II UV/ Mg II emission ratios have been proposed as means to measure th e buildup of the Fe abundance relative to that of the alpha-elements C, N, O, Ne and Mg as a function of redshift. The current observed ratios show large scatter and no obvious dependence on redshift. Thus, it remains unresolved whether a dependence on redshift exists and whether the observed Fe II UV/ Mg II ratios represent a real nucleosynthesis diagnostic. We have used our new 830-level model atom for Fe+ in photoionization calculations, reproducing the physical conditions in the broad line regions of quasars. This modeling reveals that interpretations of high values of Fe II UV/ Mg II are sensitive not only to Fe and Mg abundance, but also to other factors such as microturbulence, density, and properties of the radiation field. We find that the Fe II UV/ Mg II ratio combined with Fe II (UV)/ Fe II (Optical) emission ratio, where Fe II (Optical) denotes Fe II emission in 4000 - 6000 A can be used as a reliable nucleosynthesis diagnostic for the Fe/Mg abundance ratios for the physical conditions relevant to the broad-line regions (BLRs) of quasars. This has extreme importance for quasar observations with the Hubble Space Telescope and also with the future James Webb Space Telescope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا