ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate tensor recovery problems within the tensor singular value decomposition (t-SVD) framework. We propose the partial sum of the tubal nuclear norm (PSTNN) of a tensor. The PSTNN is a surrogate of the tensor tubal multi-rank. We build two PSTNN-based minimization models for two typical tensor recovery problems, i.e., the tensor completion and the tensor principal component analysis. We give two algorithms based on the alternating direction method of multipliers (ADMM) to solve proposed PSTNN-based tensor recovery models. Experimental results on the synthetic data and real-world data reveal the superior of the proposed PSTNN.
The process of rank aggregation is intimately intertwined with the structure of skew-symmetric matrices. We apply recent advances in the theory and algorithms of matrix completion to skew-symmetric matrices. This combination of ideas produces a new m
This work investigates the geometry of a nonconvex reformulation of minimizing a general convex loss function $f(X)$ regularized by the matrix nuclear norm $|X|_*$. Nuclear-norm regularized matrix inverse problems are at the heart of many application
We present faster high-accuracy algorithms for computing $ell_p$-norm minimizing flows. On a graph with $m$ edges, our algorithm can compute a $(1+1/text{poly}(m))$-approximate unweighted $ell_p$-norm minimizing flow with $pm^{1+frac{1}{p-1}+o(1)}$ o
Low-rankness is important in the hyperspectral image (HSI) denoising tasks. The tensor nuclear norm (TNN), defined based on the tensor singular value decomposition, is a state-of-the-art method to describe the low-rankness of HSI. However, TNN ignore
Most three dimensional constitutive relations that have been developed to describe the behavior of bodies are correlated against one dimensional and two dimensional experiments. What is usually lost sight of is the fact that infinity of such three di