ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm

95   0   0.0 ( 0 )
 نشر من قبل Tai-Xiang Jiang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate tensor recovery problems within the tensor singular value decomposition (t-SVD) framework. We propose the partial sum of the tubal nuclear norm (PSTNN) of a tensor. The PSTNN is a surrogate of the tensor tubal multi-rank. We build two PSTNN-based minimization models for two typical tensor recovery problems, i.e., the tensor completion and the tensor principal component analysis. We give two algorithms based on the alternating direction method of multipliers (ADMM) to solve proposed PSTNN-based tensor recovery models. Experimental results on the synthetic data and real-world data reveal the superior of the proposed PSTNN.



قيم البحث

اقرأ أيضاً

The process of rank aggregation is intimately intertwined with the structure of skew-symmetric matrices. We apply recent advances in the theory and algorithms of matrix completion to skew-symmetric matrices. This combination of ideas produces a new m ethod for ranking a set of items. The essence of our idea is that a rank aggregation describes a partially filled skew-symmetric matrix. We extend an algorithm for matrix completion to handle skew-symmetric data and use that to extract ranks for each item. Our algorithm applies to both pairwise comparison and rating data. Because it is based on matrix completion, it is robust to both noise and incomplete data. We show a formal recovery result for the noiseless case and present a detailed study of the algorithm on synthetic data and Netflix ratings.
This work investigates the geometry of a nonconvex reformulation of minimizing a general convex loss function $f(X)$ regularized by the matrix nuclear norm $|X|_*$. Nuclear-norm regularized matrix inverse problems are at the heart of many application s in machine learning, signal processing, and control. The statistical performance of nuclear norm regularization has been studied extensively in literature using convex analysis techniques. Despite its optimal performance, the resulting optimization has high computational complexity when solved using standard or even tailored fast convex solvers. To develop faster and more scalable algorithms, we follow the proposal of Burer-Monteiro to factor the matrix variable $X$ into the product of two smaller rectangular matrices $X=UV^T$ and also replace the nuclear norm $|X|_*$ with $(|U|_F^2+|V|_F^2)/2$. In spite of the nonconvexity of the factored formulation, we prove that when the convex loss function $f(X)$ is $(2r,4r)$-restricted well-conditioned, each critical point of the factored problem either corresponds to the optimal solution $X^star$ of the original convex optimization or is a strict saddle point where the Hessian matrix has a strictly negative eigenvalue. Such a geometric structure of the factored formulation allows many local search algorithms to converge to the global optimum with random initializations.
We present faster high-accuracy algorithms for computing $ell_p$-norm minimizing flows. On a graph with $m$ edges, our algorithm can compute a $(1+1/text{poly}(m))$-approximate unweighted $ell_p$-norm minimizing flow with $pm^{1+frac{1}{p-1}+o(1)}$ o perations, for any $p ge 2,$ giving the best bound for all $pgtrsim 5.24.$ Combined with the algorithm from the work of Adil et al. (SODA 19), we can now compute such flows for any $2le ple m^{o(1)}$ in time at most $O(m^{1.24}).$ In comparison, the previous best running time was $Omega(m^{1.33})$ for large constant $p.$ For $psimdelta^{-1}log m,$ our algorithm computes a $(1+delta)$-approximate maximum flow on undirected graphs using $m^{1+o(1)}delta^{-1}$ operations, matching the current best bound, albeit only for unit-capacity graphs. We also give an algorithm for solving general $ell_{p}$-norm regression problems for large $p.$ Our algorithm makes $pm^{frac{1}{3}+o(1)}log^2(1/varepsilon)$ calls to a linear solver. This gives the first high-accuracy algorithm for computing weighted $ell_{p}$-norm minimizing flows that runs in time $o(m^{1.5})$ for some $p=m^{Omega(1)}.$ Our key technical contribution is to show that smoothed $ell_p$-norm problems introduced by Adil et al., are interreducible for different values of $p.$ No such reduction is known for standard $ell_p$-norm problems.
Low-rankness is important in the hyperspectral image (HSI) denoising tasks. The tensor nuclear norm (TNN), defined based on the tensor singular value decomposition, is a state-of-the-art method to describe the low-rankness of HSI. However, TNN ignore s some of the physical meanings of HSI in tackling the denoising tasks, leading to suboptimal denoising performance. In this paper, we propose the multi-modal and frequency-weighted tensor nuclear norm (MFWTNN) and the non-convex MFWTNN for HSI denoising tasks. Firstly, we investigate the physical meaning of frequency components and reconsider their weights to improve the low-rank representation ability of TNN. Meanwhile, we also consider the correlation among two spatial dimensions and the spectral dimension of HSI and combine the above improvements to TNN to propose MFWTNN. Secondly, we use non-convex functions to approximate the rank function of the frequency tensor and propose the NonMFWTNN to relax the MFWTNN better. Besides, we adaptively choose bigger weights for slices mainly containing noise information and smaller weights for slices containing profile information. Finally, we develop the efficient alternating direction method of multiplier (ADMM) based algorithm to solve the proposed models, and the effectiveness of our models are substantiated in simulated and real HSI datasets.
Most three dimensional constitutive relations that have been developed to describe the behavior of bodies are correlated against one dimensional and two dimensional experiments. What is usually lost sight of is the fact that infinity of such three di mensional models may be able to explain these experiments that are lower dimensional. Recently, the notion of maximization of the rate of entropy production has been used to obtain constitutive relations based on the choice of the stored energy and rate of entropy production, etc. In this paper we show different choices for the manner in which the body stores energy and dissipates energy and satisfies the requirement of maximization of the rate of entropy production that leads to many three dimensional models. All of these models, in one dimension, reduce to the model proposed by Burgers to describe the viscoelastic behavior of bodies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا