ترغب بنشر مسار تعليمي؟ اضغط هنا

Proposal for Quantum Simulation via All-Optically Generated Tensor Network States

77   0   0.0 ( 0 )
 نشر من قبل Ish Dhand
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We devise an all-optical scheme for the generation of entangled multimode photonic states encoded in temporal modes of light. The scheme employs a nonlinear down-conversion process in an optical loop to generate one- and higher-dimensional tensor network states of light. We illustrate the principle with the generation of two different classes of entangled tensor network states and report on a variational algorithm to simulate the ground-state physics of many-body systems. We demonstrate that state-of-the-art optical devices are capable of determining the ground-state properties of the spin-1/2 Heisenberg model. Finally, implementations of the scheme are demonstrated to be robust against realistic losses and mode mismatch.



قيم البحث

اقرأ أيضاً

We introduce a novel tensor network structure augmenting the well-established Tree Tensor Network representation of a quantum many-body wave function. The new structure satisfies the area law in high dimensions remaining efficiently manipulatable and scalable. We benchmark this novel approach against paradigmatic two-dimensional spin models demonstrating unprecedented precision and system sizes. Finally, we compute the ground state phase diagram of two-dimensional lattice Rydberg atoms in optical tweezers observing non-trivial phases and quantum phase transitions, providing realistic benchmarks for current and future two-dimensional quantum simulations.
275 - A. W. Sandvik , G. Vidal 2007
We show that the formalism of tensor-network states, such as the matrix product states (MPS), can be used as a basis for variational quantum Monte Carlo simulations. Using a stochastic optimization method, we demonstrate the potential of this approac h by explicit MPS calculations for the transverse Ising chain with up to N=256 spins at criticality, using periodic boundary conditions and D*D matrices with D up to 48. The computational cost of our scheme formally scales as ND^3, whereas standard MPS approaches and the related density matrix renromalization group method scale as ND^5 and ND^6, respectively, for periodic systems.
We propose a second renormalization group method to handle the tensor-network states or models. This method reduces dramatically the truncation error of the tensor renormalization group. It allows physical quantities of classical tensor-network model s or tensor-network ground states of quantum systems to be accurately and efficiently determined.
The task of classifying the entanglement properties of a multipartite quantum state poses a remarkable challenge due to the exponentially increasing number of ways in which quantum systems can share quantum correlations. Tackling such challenge requi res a combination of sophisticated theoretical and computational techniques. In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states. We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS), whose entanglement properties can be deduced via a constrained, reinforcement learning procedure. In this way, Separable Neural Network States (SNNS) can be used to build entanglement witnesses for any target state.
The current shift in the quantum optics community towards large-size experiments -- with many modes and photons -- necessitates new classical simulation techniques that go beyond the usual phase space formulation of quantum mechanics. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. As a toy model, we extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا