ﻻ يوجد ملخص باللغة العربية
The bulk-boundary correspondence establishes a connection between the bulk topological index of an insulator or superconductor, and the number of topologically protected edge bands or states. For topological superconductors in two dimensions the first Chern number is related to the number of protected bands within the bulk energy gap, and is therefore assumed to give the number of Majorana band states in the system. Here we show that this is not necessarily the case. As an example we consider a hexagonal-lattice topological superconductor based on a model of graphene with Rashba spin orbit coupling, proximity induced s-wave superconductivity, and a Zeeman magnetic field. We explore the full Chern number phase diagram of this model, extending what is already known about its parity. We then demonstrate that despite the high Chern numbers that can be seen in some phases these do not strictly always contain Majorana bound states.
The most promising mechanisms for the formation of Majorana bound states (MBSs) in condensed matter systems involve one-dimensional systems (such as semiconductor nanowires, magnetic chains, and quantum spin Hall insulator (QSHI) edges) proximitized
We study a link between the ground-state topology and the topology of the lattice via the presence of anomalous states at disclinations -- topological lattice defects that violate a rotation symmetry only locally. We first show the existence of anoma
Topological characterization of non-Hermitian band structures demands more than a straightforward generalization of the Hermitian cases. Even for one-dimensional tight binding models with non-reciprocal hopping, the appearance of point gaps and the s
The bulk-boundary correspondence is a generic feature of topological states of matter, reflecting the intrinsic relation between topological bulk and boundary states. For example, robust edge states propagate along the edges and corner states gather
Two-dimensional second-order topological superconductors host zero-dimensional Majorana bound states at their boundaries. In this work, focusing on rotation-invariant crystalline topological superconductors, we establish a bulk-boundary correspondenc