ﻻ يوجد ملخص باللغة العربية
Linear fracture mechanics (or at least the initiation part of that theory) can be framed in a variational context as a minimization problem over a SBD type space. The corresponding functional can in turn be approximated in the sense of $Gamma$-convergence by a sequence of functionals involving a phase field as well as the displacement field. We show that a similar approximation persists if additionally imposing a non-interpenetration constraint in the minimization, namely that only nonnegative normal jumps should be permissible. 2010 Mathematics subject classification: 26A45
This paper concerns the analysis and implementation of a novel iterative staggered scheme for quasi-static brittle fracture propagation models, where the fracture evolution is tracked by a phase field variable. The model we consider is a two-field va
This article proposes an open-source implementation of a phase-field model for brittle fracture using a recently developed finite element toolbox, Gridap in Julia. The present work exploits the advantages of both the phase-field model and Gridap tool
We analyze large sets of energy-release data created by stress-induced brittle fracture in a pure sapphire crystal at close to zero temperature where stochastic fluctuations are minimal. The waiting-time distribution follows that observed for fractur
We report moment distribution results from a laboratory earthquake fault experiment consisting of sheared elastic plates separated by a narrow gap filled with a two dimensional granular medium. Local measurement of strain displacements of the plates
We prove that special functions of bounded deformation with small jump set are close in energy to functions which are smooth in a slightly smaller domain. This permits to generalize the decay estimate by De Giorgi, Carriero, and Leaci to the lineariz