ﻻ يوجد ملخص باللغة العربية
The QCD light-front Hamitonian equation derived from quantization at fixed LF time provides a causal, frame-independent, method for computing hadron spectroscopy and dynamical observables. de Alfaro, Fubini, and Furlan (dAFF) have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the dAFF procedure to the QCD light-front Hamiltonian, it leads to a color confining potential $kappa^4 zeta^2$ for mesons, where $zeta^2$ is the LF radial variable conjugate to the $q bar q$ invariant mass squared. The same result, including spin terms, is obtained using light-front holography if one modifies the AdS$_5$ action by the dilaton $e^{kappa^2 z^2}$ in the fifth dimension $z$. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions provide a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons and a universal Regge slope. The pion $q bar q$ eigenstate has zero mass at $m_q=0.$ The superconformal relations also can be extended to heavy-light quark mesons and baryons. AdS/QCD also predicts the analytic form of the nonperturbative running coupling in agreement with the effective charge measured from measurements of the Bjorken sum rule. The mass scale underlying hadron masses can be connected to the mass parameter in the QCD running coupling. The result is an effective coupling $alpha_s(Q^2)$ defined at all momenta. One also obtains empirically viable predictions for spacelike and timelike hadronic form factors, structure functions, distribution amplitudes, and transverse momentum distributions.
QCD is not supersymmetrical in the traditional sense -- the QCD Lagrangian is based on quark and gluonic fields, not squarks nor gluinos. However, its hadronic eigensolutions conform to a representation of superconformal algebra, reflecting the under
I review applications of superconformal algebra. light-front holography, and an extended form of conformal symmetry to hadron spectroscopy and dynamics. QCD is not supersymmetrical in the traditional sense -- the QCD Lagrangian is based on quark and
We give an overview of recent progress into the infrared structure of QCD based on the gauge/gravity correspondence and light-front quantization, where the color confining interaction for mesons and baryons is determined by an underlying superconform
A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD
Superconformal algebra leads to remarkable connections between the masses of mesons and baryons of the same parity -- supersymmetric relations between the bosonic and fermionic bound states of QCD. Supercharges connect the mesonic eigenstates to thei