ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb-type interaction under Lorentz symmetry breaking effects

88   0   0.0 ( 0 )
 نشر من قبل Knut Bakke
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on models of confinement of quarks, we analyse a relativistic scalar particle subject to a scalar potential proportional to the inverse of the radial distance and under the effects of the violation of the Lorentz symmetry. We show that the effects of the Lorentz symmetry breaking can induced a harmonic-type potential. Then, we solve the Klein-Gordon equation analytically and discuss the influence of the background of the violation of the Lorentz symmetry on the relativistic energy levels.


قيم البحث

اقرأ أيضاً

We consider a background of the violation of the Lorentz symmetry determined by the tensor $left( K_{F}right)_{mu ualphabeta}$ which governs the Lorentz symmetry violation out of the Standard Model Extension, where this background gives rise to a Cou lomb-type potential, and then, we analyse its effects on a relativistic quantum oscillator. Furthermore, we analyse the behaviour of the relativistic quantum oscillator under the influence of a linear scalar potential and this background of the Lorentz symmetry violation. We show in both cases that analytical solutions to the Klein-Gordon equation can be achieved.
100 - Ralf Lehnert 2006
The breakdown of spacetime symmetries has recently been identified as a promising candidate signal for underlying physics, possibly arising through quantum-gravitational effects. This talk gives an overview over various aspects of CPT- and Lorentz-vi olation research. Particular emphasis is given to the interplay between CPT, Lorentz, and translation symmetry, mechanisms for CPT and Lorentz breaking, and the construction of a low-energy quantum-field description of such effect. This quantum field framework, called the SME, is employed to determine possible phenomenological consequences of CPT and Lorentz violation for neutral-meson interferometry.
163 - J. Alexandre 2013
We show how a mass mixing matrix can be generated dynamically, for two massless fermion flavours coupled to a Lorentz invariance violating (LIV) gauge field. The LIV features play the role of a regulator for the gap equations, and the non-analytic de pendence of the dynamical masses, as functions of the gauge coupling, allows to consider the limit where the LIV gauge field eventually decouples from the fermions. Lorentz invariance is then recovered, to describe the oscillation between two free fermion flavours, and we check that the finite dynamical masses are the only effects of the original LIV theory.
We calculate higher-order quantum contributions in different Lorentz-violating parameters to the gauge sector of the extended QED. As a result of this one-loop calculation, some terms which do not produce first-order corrections, contribute with nont rivial gauge-invariant second-order quantum inductions.
Antisymmetric tensor fields interacting with quarks and leptons have been proposed as a possible solution to the gauge hierarchy problem. We compute the one-loop beta function for a quartic self-interaction of the chiral antisymmetric tensor fields. Fluctuations of the top quark drive the corresponding running coupling to a negative value as the renormalization scale is lowered. This may indicate a non-vanishing expectation value of the tensor field, and thus a spontaneous breaking of Lorentz invariance. Settling this issue will need the inclusion of tensor loops.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا