ﻻ يوجد ملخص باللغة العربية
In this paper, we show that under a mild condition, a principal submodule of the Bergman module on a bounded strongly pseudoconvex domain with smooth boundary in $mathbb{C}^n$ is $p$-essentially normal for all $p>n$. This is a significant improvement of the results of the first author and K. Wang, where the same result is shown to hold for polynomial-generated principal submodules of the Bergman module on the unit ball $mathbb{B}_n$ of $mathbb{C}^n$. As a consequence of our main result, we prove that the submodule of $L_a^2(mathbb{B}_n)$ consisting of functions vanishing on a pure analytic subsets of codimension $1$ is $p$-essentially normal for all $p>n$.
We obtain local estimates, also called propagation of smallness or Remez-type inequalities, for analytic functions in several variables. Using Carleman estimates, we obtain a three sphere-type inequality, where the outer two spheres can be any sets s
Let $mathcal{H}_d^{(t)}$ ($t geq -d$, $t>-3$) be the reproducing kernel Hilbert space on the unit ball $mathbb{B}_d$ with kernel [ k(z,w) = frac{1}{(1-langle z, w rangle)^{d+t+1}} . ] We prove that if an ideal $I triangleleft mathbb{C}[z_1, ldots, z_
Let $D$ be an irreducible bounded symmetric domain with biholomorphism group $G$ with maximal compact subgroup $K$. For the Toeplitz operators with $K$-invariant symbols we provide explicit simultaneous diagonalization formulas on every weighted Berg
We obtain sharp ranges of $L^p$-boundedness for domains in a wide class of Reinhardt domains representable as sub-level sets of monomials, by expressing them as quotients of simpler domains. We prove a general transformation law relating $L^p$-bounde
Tensor product of Fock spaces is analogous to the Hardy space over the unit polydisc. This plays an important role in the development of noncommutative operator theory and function theory in the sense of noncommutative polydomains and noncommutative