ترغب بنشر مسار تعليمي؟ اضغط هنا

Prompt emission polarimetry of Gamma Ray Bursts with ASTROSAT CZT-Imager

72   0   0.0 ( 0 )
 نشر من قبل Tanmoy Chattopadhyay
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray and Gamma-ray polarization measurements of the prompt emission of Gamma-ray bursts (GRBs) are believed to be extremely important for testing various models of GRBs. So far, the available measurements of hard X-ray polarization of GRB prompt emission have not significantly constrained the GRB models, particularly because of the difficulty of measuring polarization in these bands. The CZT Imager (CZTI) onboard {em AstroSat} is primarily an X-ray spectroscopic instrument that also works as a wide angle GRB monitor due to the transparency of its support structure above 100 keV. It also has experimentally verified polarization measurement capability in the 100 $-$ 300 keV energy range and thus provides a unique opportunity to attempt spectro-polarimetric studies of GRBs. Here we present the polarization data for the brightest 11 GRBs detected by CZTI during its first year of operation. Among these, 5 GRBs show polarization signatures with $gtrapprox$3$sigma$, and 1 GRB shows $>$2$sigma$ detection significance. We place upper limits for the remaining 5 GRBs. We provide details of the various tests performed to validate our polarization measurements. While it is difficult yet to discriminate between various emission models with the current sample alone, the large number of polarization measurements CZTI expects to gather in its minimum lifetime of five years should help to significantly improve our understanding of the prompt emission.



قيم البحث

اقرأ أيضاً

Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat has been a prolific Gamma-Ray Burst (GRB) monitor. While the 2-pixel Compton scattered events (100 - 300 keV) are used to extract sensitive spectroscopic information, the inclusion of the low-gain pixels (around 20% of the detector plane) after careful calibration extends the energy range of Compton energy spectra to 600 keV. The new feature also allows single-pixel spectroscopy of the GRBs to the sub-MeV range which is otherwise limited to 150 keV. We also introduced a new noise rejection algorithm in the analysis (Compton noise). These new additions not only enhances the spectroscopic sensitivity of CZTI, but the sub-MeV spectroscopy will also allow proper characterization of the GRBs not detected by Fermi. This article describes the methodology of single, Compton event and veto spectroscopy in 100 - 600 keV for the GRBs detected in the first year of operation. CZTI in last five years has detected around 20 bright GRBs. The new methodologies, when applied on the spectral analysis for this large sample of GRBs, has the potential to improve the results significantly and help in better understanding the prompt emission mechanism.
Fast Radio Bursts (FRBs) are short lived ($sim$ msec), energetic transients (having a peak flux density of $sim$ Jy) with no known prompt emission in other energy bands. We present results of a search for prompt X-ray emissions from 41 FRBs using the Cadmium Zinc Telluride Imager (CZTI) on AstroSat which continuously monitors $sim70%$ of the sky. Our searches on various timescales in the 20-200 keV range, did not yield any counterparts in this hard X-ray band. We calculate upper limits on hard X-ray flux, in the same energy range and convert them to upper bounds for $eta$: the ratio X-ray to radio fluence of FRBs. We find $eta leq 10^{8-10}$ for hard X-ray emission. Our results will help constrain the theoretical models of FRBs as the models become more quantitative and nearer, brighter FRBs are discovered.
GRB spectra appear non-thermal, but recent observations of a few bursts with Fermi GBM have confirmed previous indications from BATSE of the presence of an underlying thermal component. Photospheric emission is indeed expected when the relativistic o utflow emerging from the central engine becomes transparent to its own radiation, with a quasi-blackbody spectrum in absence of additional sub-photospheric dissipation. However, its intensity strongly depends on the acceleration mechanism - thermal or magnetic - of the flow. We aim to compute the thermal and non-thermal emissions produced by an outflow with a variable Lorentz factor, where the power injected at the origin is partially thermal (fraction epsilon_th) and partially magnetic (fraction 1-epsilon_th). The thermal emission is produced at the photosphere, and the non-thermal emission in the optically thin regime. Apart from the value of epsilon_th, we want to test how the other model parameters affect the observed ratio of the thermal to non-thermal emission. If the non-thermal emission is made by internal shocks, we self-consistently obtained the light curves and spectra of the thermal and non-thermal components for any distribution of the Lorentz factor in the flow. If the non-thermal emission results from magnetic reconnection we were unable to produce a light curve and could only compare the respective non-thermal and thermal spectra. In the different considered cases, we varied the model parameters to see when the thermal component in the light curve and/or spectrum is likely to show up or, on the contrary, to be hidden. We finally compared our results to the proposed evidence for the presence of a thermal component in GRB spectra. Focussing on GRB 090902B and GRB 10072B, we showed how these observations can be used to constrain the nature and acceleration mechanism of GRB outflows.
Gamma-ray bursts (GRBs) were first detected thanks to their prompt emission, which was the only information available for decades. In 2010, while the high-energy prompt emission remains the main tool for the detection and the first localization of GR B sources, our understanding of this crucial phase of GRBs has made great progress. We discuss some recent advances in this field, like the occasional detection of the prompt emission at all wavelengths, from optical to GeV; the existence of sub-luminous GRBs; the attempts to standardize GRBs; and the possible detection of polarization in two very bright GRBs. Despite these advances, tantalizing observational and theoretical challenges still exist, concerning the detection of the faintest GRBs, the panchromatic observation of GRBs from their very beginning, the origin of the prompt emission, or the understanding of the physics at work during this phase. Significant progress on this last topic is expected with SVOM thanks to the observation of dozens of GRBs from optical to MeV during the burst itself, and the measure of the redshift for the majority of them. SVOM will also change our view of the prompt GRB phase in another way. Within a few years, the sensitivity of sky surveys at optical and radio frequencies, and outside the electromagnetic domain in gravitational waves or neutrinos, will allow them to detect several new types of transient signals, and SVOM will be uniquely suited to identify which of these transients are associated with GRBs. This radically novel look at GRBs may elucidate the complex physics producing these bright flashes.
We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than $sim1%$ of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا