ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on cometary surface evolution derived from a statistical analysis of 67Ps topography

73   0   0.0 ( 0 )
 نشر من قبل Jean-Baptiste Vincent
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a statistical analysis of the distribution of large scale topographic features on comet 67P/Churyumov-Gerasimenko. We observe that the cumulative cliff height distribution across the surface follows a power law with a slope equal to -1.69 +- 0.02. When this distribution is studied independently for each region, we find a good correlation between the slope of the power law and the orbital erosion rate of the surface. For instance, the northern hemisphere topography is dominated by structures on the 100~m scale while the southern hemisphere topography, illuminated at perihelion, is dominated by 10~m scale terrain features. Our study suggest that the current size of a cliff is controlled not only by material cohesion but by the dominant erosional process in each region. This observation can be generalized to other comets, where we argue that primitive nuclei are characterized by the presence of large cliffs with a cumulative height power index equal to or above -1.5, while older, eroded cometary surfaces have a power index equal to or below -2.3. In effect, our model shows that a measure of the topography provides a quantitative assessment of a comets erosional history, i.e. its evolutionary age.

قيم البحث

اقرأ أيضاً

Cometary surfaces can change significantly and rapidly due to the sublimation of their volatile material. Many authors have investigated this evolution; Vincent et al. (2017) have used topographic data from all comets visited by spacecrafts to derive a quantitative model which relates large scale roughness (i.e. topography) with the evolution state of the nucleus for Jupiter Family Comets (JFCs). Meanwhile, ground based observers have published measurements of the phase functions of many JFCs and reported a trend in the phase darkening, with primitive objects showing a stronger darkening than evolved ones). In this paper, we use a numerical implementation of the topographic description by Vincent et al. (2017) to build virtual comets and measure the phase darkening induced by the different levels of macro-roughness. We then compare our model with the values published by Kokotanekova et al. (2018) We find that pure geometric effects like self-shadowing can represent up to 22% of the darkening observed for more primitive objects, and 15% for evolved surfaces. This shows that although physical and chemical properties remain the major contributor to the phase darkening, the additional effect of the topography cannot be neglected.
Rosetta observations of 67P/Churyumov-Gerasimenko (67P) reveal that most changes occur in the fallback-generated smooth terrains, vast deposits of granular material blanketing the comets northern hemisphere. These changes express themselves both morp hologically and spectrally across the nucleus, yet we lack a model that describes their formation and evolution. Here we present a self-consistent model that thoroughly explains the activity and mass loss from Hapis smooth terrains. Our model predicts the removal of dust via re-radiated solar insolation localized within depression scarps that are substantially more ice-rich than previously expected. We couple our model with numerous Rosetta observations to thoroughly capture the seasonal erosion of Hapis smooth terrains, where local scarp retreat gradually removes the uppermost dusty mantle. As sublimation-regolith interactions occur on rocky planets, comets, icy moons and KBOs, our coupled model and observations provide a foundation for future understanding of the myriad of sublimation-carved worlds.
The gas-driven dust activity of comets is still an unresolved question in cometary science. In the past, it was believed that comets are dirty snowballs and that the dust is ejected when the ice retreats. However, thanks to the various space missions to comets, it has become evident that comets have a much higher dust-to-ice ratio than previously thought and that most of the dust mass is ejected in large particles. Here we report on new comet-simulation experiments dedicated to the study of the ejection of dust aggregates caused by the sublimation of solid water ice. We find that dust ejection exactly occurs when the pressure of the water vapor above the ice surface exceeds the tensile strength plus the gravitational load of the covering dust layer. Furthermore, we observed the ejection of clusters of dust aggregates, whose sizes increase with increasing thickness of the ice-covering dust-aggregate layer. In addition, the trajectories of the ejected aggregates suggest that most of the aggregates obtained a non-vanishing initial velocity from the ejection event.
96 - Niharika Sravan 2017
Type IIb supernovae (SNe) present a unique opportunity for understanding the progenitors of stripped-envelope (SE) SNe as the stellar progenitor of several Type IIb SNe have been identified in pre-explosion images. In this paper, we use Bayesian infe rence and a large grid of non-rotating solar-metallicity single and binary stellar models to derive the associated probability distributions of single and binary progenitors of the Type IIb SN 2016gkg using existing observational constraints. We find that potential binary star progenitors have smaller pre-SN hydrogen-envelope and helium-core masses than potential single-star progenitors typically by 0.1 Msun and 2 Msun, respectively. We find that, a binary companion, if present, is a main-sequence or red-giant star. Apart from this, we do not find strong constraints on the nature of the companion star. We demonstrate that the range of progenitor helium-core mass inferred from observations could help improve constraints on the progenitor. We find that the probability that the progenitor of SN 2016gkg was a binary is 22% when we use constraints only on the progenitor luminosity and effective temperature. Imposing the range of pre-SN progenitor hydrogen-envelope mass and radius inferred from SN light-curves the probability the progenitor is a binary increases to 44%. However, there is no clear preference for a binary progenitor. This is in contrast to binaries being the currently favored formation channel for Type IIb SNe. Our analysis demonstrates the importance of statistical inference methods to constrain progenitor channels.
The study of meteorite craters on Earth provides information about the dynamic evolution of bodies within the Solar System. Bosumtwi crater is a well studied, 10.5 km in diameter, ca. 1.07 Ma old impact structure located in Ghana. The impactor was $s im$ 1 km in diameter, an ordinary chondrite and struck the Earth with an angle between 30$^circ$ and 45$^circ$ from the horizontal. We have used a two phase backward integration to constrain the most probable parent region of the impactor. We find that the most likely source region is a high inclination object from the Middle Main Belt.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا