ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of a planar front in a multidimensional reaction-diffusion system

131   0   0.0 ( 0 )
 نشر من قبل Anna Ghazaryan
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the planar front solution for a class of reaction diffusion equations in multidimensional space in the case when the essential spectrum of the linearization in the direction of the front touches the imaginary axis. At the linear level, the spectrum is stabilized by using an exponential weight. A-priori estimates for the nonlinear terms of the equation governing the evolution of the perturbations of the front are obtained when perturbations belong to the intersection of the exponentially weighted space with the original space without a weight. These estimates are then used to show that in the original norm, initially small perturbations to the front remain bounded, while in the exponentially weighted norm, they algebraically decay in time.

قيم البحث

اقرأ أيضاً

This manuscript extends the analysis of a much studied singularly perturbed three-component reaction-diffusion system for front dynamics in the regime where the essential spectrum is close to the origin. We confirm a conjecture from a preceding paper by proving that the triple multiplicity of the zero eigenvalue gives a Jordan chain of length three. Moreover, we simplify the center manifold reduction and computation of the normal form coefficients by using the Evans function for the eigenvalues. Finally, we prove the unfolding of a Bogdanov-Takens bifurcation with symmetry in the model. This leads to stable periodic front motion, including stable traveling breathers, and these results are illustrated by numerical computations.
We revisit the problem of pinning a reaction-diffusion front by a defect, in particular by a reaction-free region. Using collective variables for the front and numerical simulations, we compare the behaviors of a bistable and monostable front. A bist able front can be pinned as confirmed by a pinning criterion, the analysis of the time independant problem and simulations. Conversely, a monostable front can never be pinned, it gives rise to a secondary pulse past the defect and we calculate the time this pulse takes to appear. These radically different behaviors of bistable and monostable fronts raise issues for modelers in particular areas of biology, as for example, the study of tumor growth in the presence of different tissues.
We consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction. We deduce from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies e stimates which do not depend on the chemical kinetics factor. It follows that the solution converges to the solution of a nonlinear diffusion problem, as the size of the volume elements and the time steps converge to zero while the kinetic rate tends to infinity.
159 - Yingwei Li 2016
Using pointwise semigroup techniques, we establish sharp rates of decay in space and time of a perturbed reaction diffusion front to its time-asymptotic limit. This recovers results of Sattinger, Henry and others of time-exponential convergence in we ighted $L^p$ and Sobolev norms, while capturing the new feature of spatial diffusion at Gaussian rate. Novel features of the argument are a point-wise Green function decomposition reconciling spectral decomposition and short-time Nash-Aronson estimates and an instantaneous tracking scheme similar to that used in the study of stability of viscous shock waves.
105 - Arnaud Ducrot 2019
We investigate spreading properties of solutions of a large class of two-component reaction-diffusion systems, including prey-predator systems as a special case. By spreading properties we mean the long time behaviour of solution fronts that start fr om localized (i.e. compactly supported) initial data. Though there are results in the literature on the existence of travelling waves for such systems, very little has been known-at least theoretically-about the spreading phenomena exhibited by solutions with compactly supported initial data. The main difficulty comes from the fact that the comparison principle does not hold for such systems. Furthermore, the techniques that are known for travelling waves such as fixed point theorems and phase portrait analysis do not apply to spreading fronts. In this paper, we first prove that spreading occurs with definite spreading speeds. Intriguingly, two separate fronts of different speeds may appear in one solution-one for the prey and the other for the predator-in some situations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا