ﻻ يوجد ملخص باللغة العربية
We study the planar front solution for a class of reaction diffusion equations in multidimensional space in the case when the essential spectrum of the linearization in the direction of the front touches the imaginary axis. At the linear level, the spectrum is stabilized by using an exponential weight. A-priori estimates for the nonlinear terms of the equation governing the evolution of the perturbations of the front are obtained when perturbations belong to the intersection of the exponentially weighted space with the original space without a weight. These estimates are then used to show that in the original norm, initially small perturbations to the front remain bounded, while in the exponentially weighted norm, they algebraically decay in time.
This manuscript extends the analysis of a much studied singularly perturbed three-component reaction-diffusion system for front dynamics in the regime where the essential spectrum is close to the origin. We confirm a conjecture from a preceding paper
We revisit the problem of pinning a reaction-diffusion front by a defect, in particular by a reaction-free region. Using collective variables for the front and numerical simulations, we compare the behaviors of a bistable and monostable front. A bist
We consider the finite volume approximation of a reaction-diffusion system with fast reversible reaction. We deduce from a priori estimates that the approximate solution converges to the weak solution of the reaction-diffusion problem and satisfies e
Using pointwise semigroup techniques, we establish sharp rates of decay in space and time of a perturbed reaction diffusion front to its time-asymptotic limit. This recovers results of Sattinger, Henry and others of time-exponential convergence in we
We investigate spreading properties of solutions of a large class of two-component reaction-diffusion systems, including prey-predator systems as a special case. By spreading properties we mean the long time behaviour of solution fronts that start fr