ترغب بنشر مسار تعليمي؟ اضغط هنا

Partitioned List Decoding of Polar Codes: Analysis and Improvement of Finite Length Performance

348   0   0.0 ( 0 )
 نشر من قبل Seyyed Ali Hashemi
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Polar codes represent one of the major recent breakthroughs in coding theory and, because of their attractive features, they have been selected for the incoming 5G standard. As such, a lot of attention has been devoted to the development of decoding algorithms with good error performance and efficient hardware implementation. One of the leading candidates in this regard is represented by successive-cancellation list (SCL) decoding. However, its hardware implementation requires a large amount of memory. Recently, a partitioned SCL (PSCL) decoder has been proposed to significantly reduce the memory consumption. In this paper, we examine the paradigm of PSCL decoding from both theoretical and practical standpoints: (i) by changing the construction of the code, we are able to improve the performance at no additional computational, latency or memory cost, (ii) we present an optimal scheme to allocate cyclic redundancy checks (CRCs), and (iii) we provide an upper bound on the list size that allows MAP performance.



قيم البحث

اقرأ أيضاً

Polar codes are a class of channel capacity achieving codes that has been selected for the next generation of wireless communication standards. Successive-cancellation (SC) is the first proposed decoding algorithm, suffering from mediocre error-corre ction performance at moderate code length. In order to improve the error-correction performance of SC, two approaches are available: (i) SC-List decoding which keeps a list of candidates by running a number of SC decoders in parallel, thus increasing the implementation complexity, and (ii) SC-Flip decoding that relies on a single SC module, and keeps the computational complexity close to SC. In this work, we propose the partitioned SC-Flip (PSCF) decoding algorithm, which outperforms SC-Flip in terms of error-correction performance and average computational complexity, leading to higher throughput and reduced energy consumption per codeword. We also introduce a partitioning scheme that best suits our PSCF decoder. Simulation results show that at equivalent frame error rate, PSCF has up to $5 times$ less computational complexity than the SC-Flip decoder. At equivalent average number of iterations, the error-correction performance of PSCF outperforms SC-Flip by up to $0.15$ dB at frame error rate of $10^{-3}$.
A new class of folded subspace codes for noncoherent network coding is presented. The codes can correct insertions and deletions beyond the unique decoding radius for any code rate $Rin[0,1]$. An efficient interpolation-based decoding algorithm for t his code construction is given which allows to correct insertions and deletions up to the normalized radius $s(1-((1/h+h)/(h-s+1))R)$, where $h$ is the folding parameter and $sleq h$ is a decoding parameter. The algorithm serves as a list decoder or as a probabilistic unique decoder that outputs a unique solution with high probability. An upper bound on the average list size of (folded) subspace codes and on the decoding failure probability is derived. A major benefit of the decoding scheme is that it enables probabilistic unique decoding up to the list decoding radius.
Linearized Reed-Solomon (LRS) codes are sum-rank metric codes that fulfill the Singleton bound with equality. In the two extreme cases of the sum-rank metric, they coincide with Reed-Solomon codes (Hamming metric) and Gabidulin codes (rank metric). L ist decoding in these extreme cases is well-studied, and the two code classes behave very differently in terms of list size, but nothing is known for the general case. In this paper, we derive a lower bound on the list size for LRS codes, which is, for a large class of LRS codes, exponential directly above the Johnson radius. Furthermore, we show that some families of linearized Reed-Solomon codes with constant numbers of blocks cannot be list decoded beyond the unique decoding radius.
Raptor codes have been widely used in many multimedia broadcast/multicast applications. However, our understanding of Raptor codes is still incomplete due to the insufficient amount of theoretical work on the performance analysis of Raptor codes, par ticularly under maximum-likelihood (ML) decoding, which provides an optimal benchmark on the system performance for the other decoding schemes to compare against. For the first time, this paper provides an upper bound and a lower bound, on the packet error performance of Raptor codes under ML decoding, which is measured by the probability that all source packets can be successfully decoded by a receiver with a given number of successfully received coded packets. Simulations are conducted to validate the accuracy of the analysis. More specifically, Raptor codes with different degree distribution and pre-coders, are evaluated using the derived bounds with high accuracy.
Performance and complexity of sequential decoding of polarization-adjusted convolutional (PAC) codes is studied. In particular, a performance and computational complexity comparison of PAC codes with 5G polar codes and convolutional codes is given. A method for bounding the complexity of sequential decoding of PAC codes is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا