ترغب بنشر مسار تعليمي؟ اضغط هنا

Absence of magnetic long range order in Y$_{2}$CrSbO$_{7}$: bond-disorder induced magnetic frustration in a ferromagnetic pyrochlore

197   0   0.0 ( 0 )
 نشر من قبل Lingjia Shen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The consequences of nonmagnetic-ion dilution for the pyrochlore family Y$_{2}$($M_{1-x}N_{x}$)$_{2}$O$_{7}$ ($M$ = magnetic ion, $N$ = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y$_{2}$CrSbO$_{7}$ ($x$ = 0.5), in which the magnetic sites (Cr$^{3+}$) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, $Theta_mathrm{{CW}}$ = 20.1(6) K, our high-resolution neutron powder diffraction measurements detect no sign of magnetic long range order down to 2 K. In order to understand our observations, we performed numerical simulations to study the bond-disorder introduced by the ionic size mismatch between $M$ and $N$. Based on these simulations, bond-disorder ($x_{b}$ $simeq$ 0.23) percolates well ahead of site-disorder ($x_{s}$ $simeq$ 0.61). This model successfully reproduces the critical region (0.2 < $x$ < 0.25) for the Neel to spin glass phase transition in Zn(Cr$_{1-x}$Ga$_{x}$)$_{2}$O$_{4}$, where the Cr/Ga-sublattice forms the same corner-sharing tetrahedral network as the $M/N$-sublattice in Y$_{2}$($M_{1-x}N_{x}$)$_{2}$O$_{7}$, and the rapid drop in magnetically ordered moment in the Neel phase [Lee $et$ $al$, Phys. Rev. B 77, 014405 (2008)]. Our study stresses the nonnegligible role of bond-disorder on magnetic frustration, even in ferromagnets.

قيم البحث

اقرأ أيضاً

We present results from muon spin relaxation/rotation, magnetization, neutron scattering and transport measurements on polycrystalline samples of the pyrochlore iridates Y2Ir2O7 (Y-227) and Yb2Ir2O7 (Yb-227). Well-defined spontaneous oscillations of the muon asymmetry are observed together with hysteretic behavior in magnetization below 130 K in Yb-227, indicative of commensurate long-range magnetic order. Similar oscillations are observed in Y-227 below 150 K; however the onset of hysteretic magnetization at T = 190 K indicates a transition to an intermediate state lacking long-range order as observed in Nd-227. Our results also show that insulating members of the iridate family have nearly identical magnetic ground states, and that the presence of magnetic A-site species does not play any significant role in altering the ground state properties.
Neutron scattering and magnetization measurements have been performed on the stuffed pyrochlore system Tb2+xTi2-2xNbxO7. We find that despite the introduction of chemical disorder and increasingly antiferromagnetic interactions, a spin glass transiti on does not occur for T >= 1.5 K and cooperative paramagnetic behavior exists for all x. For x = 1, Tb3NbO7, an antiferromagnetically ordered state coexisting with cooperative paramagnetic behavior is seen without applying any external fields or pressure, a situation advantageous for studying this cooperative behavior.
We performed ultrafast time-resolved near-infrared pump, resonant soft X-ray diffraction probe measurements to investigate the coupling between the photoexcited electronic system and the spin cycloid magnetic order in multiferroic TbMnO3 at low tempe ratures. We observe melting of the long range antiferromagnetic order at low excitation fluences with a decay time constant of 22.3 +- 1.1 ps, which is much slower than the ~1 ps melting times previously observed in other systems. To explain the data we propose a simple model of the melting process where the pump laser pulse directly excites the electronic system, which then leads to an increase in the effective temperature of the spin system via a slower relaxation mechanism. Despite this apparent increase in the effective spin temperature, we do not observe changes in the wavevector q of the antiferromagnetic spin order that would typically correlate with an increase in temperature under equilibrium conditions. We suggest that this behavior results from the extremely low magnon group velocity that hinders a change in the spin-spiral wavevector on these time scales.
The magnetic properties of the layered oxypnictide LaMnAsO have been revisited using neutron scattering and magnetization measurements. The present measurements identify the N{e}el temperature $T_N$ = 360(1) K. Below $T_N$ the critical exponent descr ibing the magnetic order parameter is $beta$ = 0.33$-$0.35, consistent with a three dimensional Heisenberg model. Above this temperature, diffuse magnetic scattering indicative of short-range magnetic order is observed, and this scattering persists up to $T_{SRO}$ = 650(10) K. The magnetic susceptibility shows a weak anomaly at $T_{SRO}$ and no anomaly at $T_N$. Analysis of the diffuse scattering data using a reverse Monte Carlo algorithm indicates that above $T_N$ nearly two- dimensional, short-range magnetic order is present with a correlation length of 9.3(3) {AA} within the Mn layers at 400 K. The inelastic scattering data reveal a spin-gap of 3.5 meV in the long-range ordered state, and strong, low-energy (quasi-elastic) magnetic excitations emerging in the short-range ordered state. Comparison with other related compounds correlates the distortion of the Mn coordination tetrahedra to the sign of the magnetic exchange along the layer-stacking direction, and suggests that short-range order above $T_N$ is a common feature in the magnetic behavior of layered Mn-based pnictides and oxypnictides.
We have discovered a novel candidate for a spin liquid state in a ruthenium oxide composed of dimers of $S = $ 3/2 spins of Ru$^{5+}$,Ba$_3$ZnRu$_2$O$_9$. This compound lacks a long range order down to 37 mK, which is a temperature 5000-times lower t han the magnetic interaction scale of around 200 K. Partial substitution for Zn can continuously vary the magnetic ground state from an antiferromagnetic order to a spin-gapped state through the liquid state. This indicates that the spin-liquid state emerges from a delicate balance of inter- and intra-dimer interactions, and the spin state of the dimer plays a vital role. This unique feature should realize a new type of quantum magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا