ﻻ يوجد ملخص باللغة العربية
The XENON1T experiment aims for the direct detection of dark matter in a cryostat filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the $beta$-emitter $^{85}$Kr which is an intrinsic contamination of the xenon. For the XENON1T experiment a concentration of natural krypton in xenon $rm{^{nat}}$Kr/Xe < 200 ppq (parts per quadrillion, 1 ppq = 10$^{-15}$ mol/mol) is required. In this work, the design of a novel cryogenic distillation column using the common McCabe-Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4$cdot$10$^5$ with thermodynamic stability at process speeds above 3 kg/h. The resulting concentration of $rm{^{nat}}$Kr/Xe < 26 ppq is the lowest ever achieved, almost one order of magnitude below the requirements for XENON1T and even sufficient for future dark matter experiments using liquid xenon, such as XENONnT and DARWIN.
An efficient cryogenic distillation system was designed and constructed for PandaX-4T dark matter detector based on the McCabe-Thiele (M-T) method and the conservation of mass and energy. This distillation system is designed to reduce the concentrati
A high performance distillation system to remove krypton from xenon was constructed, and a purity level of Kr/Xe = $sim 3 times 10^{-12}$ was achieved. This development is crucial in facilitating high sensitivity low background experiments such as the search for dark matter in the universe.
An online cryogenic distillation system for the removal of krypton and radon from xenon was designed and constructed for PandaX-4T, a highly sensitive dark matter detection experiment. The krypton content in a commercial xenon product is expected to
We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column is integrated into the gas purification loop of the XENON100 detector for online radon removal. This e
The NA62 experiment at CERN SPS aims to measure the Branching Ratio of the very rare kaon decay K+ -> pi+ nu nubar collecting O(100) events with a 10% background to make a stringent test of the Standard Model. One of the main backgrounds to the propo