ترغب بنشر مسار تعليمي؟ اضغط هنا

A revised planetary nebula luminosity function distance to NGC 628 using MUSE

87   0   0.0 ( 0 )
 نشر من قبل Kathryn Stanonik Kreckel
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Distance uncertainties plague our understanding of the physical scales relevant to the physics of star formation in extragalactic studies. The planetary nebulae luminosity function (PNLF) is one of very few techniques that can provide distance estimates to within ~10%, however it requires a planetary nebula (PN) sample that is uncontaminated by other ionizing sources. We employ optical IFU spectroscopy using MUSE on the VLT to measure [OIII] line fluxes for sources unresolved on 50 pc scales within the central star-forming galaxy disk of NGC 628. We use diagnostic line ratios to identify 62 PNe, 30 supernova remnants and 87 HII regions within our fields. Using the 36 brightest PNe we determine a new PNLF distance modulus of 29.91^{+0.08}_{-0.13} mag (9.59^{+0.35}_{-0.57} Mpc), in good agreement with literature values but significantly larger than the previously reported PNLF distance. We are able to explain the discrepancy and recover the previous result when we reintroduce SNR contaminants to our sample. This demonstrates the power of full spectral information over narrowband imaging in isolating PNe. Given our limited spatial coverage within the galaxy, we show that this technique can be used to refine distance estimates even when IFU observations cover only a fraction of a galaxy disk.

قيم البحث

اقرأ أيضاً

We describe a revised procedure for the numerical simulation of planetary nebulae luminosity functions (PNLF), improving on previous work (Mendez & Soffner 1997). The procedure now is based on new H-burning post-AGB evolutionary tracks (Miller Bertol ami 2016). For a given stellar mass, the new central stars are more luminous and evolve faster. We have slightly changed the distribution of the [OIII] 5007 intensities relative to those of H$beta$ and the generation of absorbing factors, while still basing their numerical modeling on empirical information extracted from studies of galactic planetary nebulae (PNs) and their central stars. We argue that the assumption of PNs being completely optically thick to H-ionizing photons leads to conflicts with observations and show that to account for optically thin PNs is necessary. We then use the new simulations to estimate a maximum final mass, clarifying its meaning, and discuss the effect of internal dust extinction as a possible way of explaining the persistent discrepancy between PNLF and surface brightness fluctuation (SBF) distances. By adjusting the range of minimum to maximum final mass, it is also possible to explain the observed variety of PNLF shapes at intermediate magnitudes. The new PN formation rates are calculated to be slightly lower than suggested by previous simulations based on older post-AGB evolutionary tracks.
80 - J. R. Walsh 2018
The spatial structure of the emission lines and continuum over the 50 arcsecond extent of the nearby, O-rich, planetary nebula NGC 7009 (Saturn Nebula) have been observed with the MUSE integral field spectrograph on the ESO Very Large Telescope. Scie nce Verification data, in <0.6 arcsecond seeing, have been reduced and analysed as images over the wavelength range 4750-9350A. Emission line maps over the bright shells are presented, from neutral to the highest ionization available (He II and [Mn V]). For collisionally excited lines (CELs), maps of electron temperature (T_e from [N II] and [S III]) and electron density (N_e from [S II] and [Cl III]) are available and for optical recombination lines (ORLs) temperature (from the Paschen jump and ratio of He I lines) and density (from high Paschen lines). These estimates are compared: for the first time, maps of the differences in CEL and ORL T_es have been derived, and correspondingly a map of t^2 between a CEL and ORL temperature, showing considerable detail. Total abundances of He and O were formed, the latter using three ionization correction factors. However the map of He/H is not flat, departing by ~2% from a constant value, with remnants corresponding to ionization structures. Ionization correction factor methods are compared for O abundance, but none delivers a flat map. An integrated spectrum over an area of 2340 square arcseconds was also formed and compared to 1D photoionization models. The spatial variation of a range of nebular parameters illustrates the complexity of the ionized media in NGC 7009. These MUSE data are very rich with detections of many lines over areas of hundreds of square arcseconds and follow-on studies are indicated. (Abridged)
The planetary nebula luminosity function (PNLF) has been used as an extragalactic distance indicator since the 1980s, but there are still unsolved problems associated with its use. One of the most serious involves PNLF distances beyond ~ 10 Mpc, whic h tend to be slightly smaller than those of other methods. We consider the implications of previous spectroscopic investigations that found that several of the brightest planetary nebula (PN) candidates in M74 are actually compact supernova remnants (SNRs). Using narrow-band imaging data from the KPNO 4-m telescope, we measure the [O III] $lambda$5007 and H$alpha$ fluxes of all the known SNRs in M31 and M33, and test whether those objects could be misidentified as bright PNe at distances beyond ~ 10 Mpc. Our results suggest that compact SNRs are not an important source of contamination in photometric surveys for extragalactic PNe.
197 - J. R. Walsh 2016
The large field and wavelength range of MUSE is well suited to mapping Galactic planetary nebulae (PN). The bright PN NGC 7009 was observed with MUSE on the VLT during the Science Verification of the instrument in seeing of 0.6. Emission line maps in hydrogen Balmer and Paschen lines were formed from analysis of the MUSE cubes. The measured electron temperature and density from the MUSE cube were employed to predict the theoretical hydrogen line ratios and map the extinction distribution across the nebula. After correction for the interstellar extinction to NGC 7009, the internal dust-to-gas ratio (A_V/N_H) has been mapped for the first time in a PN. The extinction map of NGC 7009 has considerable structure, broadly corresponding to the morphological features of the nebula. A large-scale feature in the extinction map, consisting of a crest and trough, occurs at the rim of the inner shell. The nature of this feature was investigated and instrumental and physical causes considered; no convincing mechanisms were identified to produce this feature, other than mass loss variations in the earlier asymptotic giant branch phase. The dust-to-gas ratio A_V/N_H increases from 0.7 times the interstellar value to >5 times from the centre towards the periphery of the ionized nebula. The integrated A_V/N_H is about 2 times the mean ISM value. It is demonstrated that extinction mapping with MUSE provides a powerful tool for studying the distribution of PN internal dust and the dust-to-gas ratio. (Abridged.)
The Planetary Nebulae Luminosity Function (PNLF) describes the collective luminosity evolution for a given population of Planetary Nebulae (PN). A major paradox in current PNLF studies is in the universality of the absolute magnitude of the brightest PNe with galaxy type and age. The progenitor central-star mass required to produce such bright PNe should have evolved beyond the PNe phase in old, red elliptical galaxies whose stellar populations are ~10~Gyr. Only by dissecting this resolved population in detail can we attempt to address this conundrum. The Bulge of our Galaxy is predominantly old citep{Z03} and can therefore be used as a proxy for an elliptical galaxy, but with the significant advantage that the population is resolvable from ground based telescopes. We have used the MOSAIC-II camera on the Blanco 4-m at CTIO to carefully target ~80 square degrees of the Galactic Bulge and establish accurate [Oiii] fluxes for 80% of Bulge PNe currently known from the Acker and MASH catalogues. Construction of the [Oiii] Bulge PNLF has allowed us to investigate placement of PNe population sub-sets according to morphology and spectroscopic properties the PNLF and most importantly, whether any population subset might constitute the bright end of the LF. Our excellent, deep data also offers exciting prospects for significant new PNe discoveries and [Oiii] morphological studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا