ﻻ يوجد ملخص باللغة العربية
It is known that an object translating parallel to a soft wall in a viscous fluid produces hydro- dynamic stresses that deform the wall, which, in turn, results in a lift force on the object. Recent experiments with cylinders sliding under gravity near a soft incline, which confirmed theoretical arguments for the lift force, also reported an unexplained steady-state rotation of the cylinders [Saintyves et al. PNAS 113(21), 2016]. Motivated by these observations, we show, in the lubrication limit, that an infinite cylinder that translates in a viscous fluid parallel to a soft wall at constant speed and separation distance must also rotate in order to remain free of torque. Using the Lorentz reciprocal theorem, we show analytically that for small deformations of the elastic layer, the angular velocity of the cylinder scales with the cube of the sliding speed. These predictions are confirmed numerically. We then apply the theory to the gravity-driven motion of a cylinder near a soft incline and find qualitative agreement with the experimental observations, namely that a softer elastic layer results in a greater angular speed of the cylinder.
The emerging field of self-driven active particles in fluid environments has recently created significant interest in the biophysics and bioengineering communities owing to their promising future biomedical and technological applications. These micro
We analyze the primitive variables of fluid flow and scalar fields through fast Fourier transform (FFT) in the near and far wake of an elliptic cylinder. Numerical simulation of flow and scalar fields behind an elliptic cylinder of axis ratio 0.4 at
In this report we formulate and analyse a mathematical model describing the evolution of a thin liquid film coating a wire via an extrusion process. We consider the Navier-Stokes equations for a 2D incompressible Newtonian fluid coupled to the standa
A cylinder undergoes precession when it rotates around its axis and this axis itself rotates around another direction. In a precessing cylinder full of fluid, a steady and axisymmetric component of the azimuthal flow is generally present. This compon
We consider the deposition of a film of viscous liquid on a flat plate being withdrawn from a bath, experimentally and theoretically. For any plate speed $U$, there is a range of ``thick film solutions whose thickness scales like $U^{1/2}$ for small