ترغب بنشر مسار تعليمي؟ اضغط هنا

Langevin Diffusion for Population Based Sampling with an Application in Bayesian Inference for Pharmacodynamics

51   0   0.0 ( 0 )
 نشر من قبل Arampatzis Georgios
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an algorithm for the efficient and robust sampling of the posterior probability distribution in Bayesian inference problems. The algorithm combines the local search capabilities of the Manifold Metropolis Adjusted Langevin transition kernels with the advantages of global exploration by a population based sampling algorithm, the Transitional Markov Chain Monte Carlo (TMCMC). The Langevin diffusion process is determined by either the Hessian or the Fisher Information of the target distribution with appropriate modifications for non positive definiteness. The present methods is shown to be superior over other population based algorithms, in sampling probability distributions for which gradients are available and is shown to handle otherwise unidentifiable models. We demonstrate the capabilities and advantages of the method in computing the posterior distribution of the parameters in a Pharmacodynamics model, for glioma growth and its drug induced inhibition, using clinical data.



قيم البحث

اقرأ أيضاً

Phylodynamics focuses on the problem of reconstructing past population size dynamics from current genetic samples taken from the population of interest. This technique has been extensively used in many areas of biology, but is particularly useful for studying the spread of quickly evolving infectious diseases agents, e.g., influenza virus. Phylodynamics inference uses a coalescent model that defines a probability density for the genealogy of randomly sampled individuals from the population. When we assume that such a genealogy is known, the coalescent model, equipped with a Gaussian process prior on population size trajectory, allows for nonparametric Bayesian estimation of population size dynamics. While this approach is quite powerful, large data sets collected during infectious disease surveillance challenge the state-of-the-art of Bayesian phylodynamics and demand computationally more efficient inference framework. To satisfy this demand, we provide a computationally efficient Bayesian inference framework based on Hamiltonian Monte Carlo for coalescent process models. Moreover, we show that by splitting the Hamiltonian function we can further improve the efficiency of this approach. Using several simulated and real datasets, we show that our method provides accurate estimates of population size dynamics and is substantially faster than alternative methods based on elliptical slice sampler and Metropolis-adjusted Langevin algorithm.
We introduce an efficient MCMC sampling scheme to perform Bayesian inference in the M/G/1 queueing model given only observations of interdeparture times. Our MCMC scheme uses a combination of Gibbs sampling and simple Metropolis updates together with three novel shift and scale updates. We show that our novel updates improve the speed of sampling considerably, by factors of about 60 to about 180 on a variety of simulated data sets.
Modelling random dynamical systems in continuous time, diffusion processes are a powerful tool in many areas of science. Model parameters can be estimated from time-discretely observed processes using Markov chain Monte Carlo (MCMC) methods that intr oduce auxiliary data. These methods typically approximate the transition densities of the process numerically, both for calculating the posterior densities and proposing auxiliary data. Here, the Euler-Maruyama scheme is the standard approximation technique. However, the MCMC method is computationally expensive. Using higher-order approximations may accelerate it, but the specific implementation and benefit remain unclear. Hence, we investigate the utilisation and usefulness of higher-order approximations in the example of the Milstein scheme. Our study demonstrates that the MCMC methods based on the Milstein approximation yield good estimation results. However, they are computationally more expensive and can be applied to multidimensional processes only with impractical restrictions. Moreover, the combination of the Milstein approximation and the well-known modified bridge proposal introduces additional numerical challenges.
Bayesian inference for nonlinear diffusions, observed at discrete times, is a challenging task that has prompted the development of a number of algorithms, mainly within the computational statistics community. We propose a new direction, and accompan ying methodology, borrowing ideas from statistical physics and computational chemistry, for inferring the posterior distribution of latent diffusion paths and model parameters, given observations of the process. Joint configurations of the underlying process noise and of parameters, mapping onto diffusion paths consistent with observations, form an implicitly defined manifold. Then, by making use of a constrained Hamiltonian Monte Carlo algorithm on the embedded manifold, we are able to perform computationally efficient inference for an extensive class of discretely observed diffusion models. Critically, in contrast with other approaches proposed in the literature, our methodology is highly automated, requiring minimal user intervention and applying alike in a range of settings, including: elliptic or hypo-elliptic systems; observations with or without noise; linear or non-linear observation operators. Exploiting Markovianity, we propose a variant of the method with complexity that scales linearly in the resolution of path discretisation and the number of observation times.
182 - Daniel Yekutieli 2011
We address the problem of providing inference from a Bayesian perspective for parameters selected after viewing the data. We present a Bayesian framework for providing inference for selected parameters, based on the observation that providing Bayesia n inference for selected parameters is a truncated data problem. We show that if the prior for the parameter is non-informative, or if the parameter is a fixed unknown constant, then it is necessary to adjust the Bayesian inference for selection. Our second contribution is the introduction of Bayesian False Discovery Rate controlling methodology,which generalizes existing Bayesian FDR methods that are only defined in the two-group mixture model.We illustrate our results by applying them to simulated data and data froma microarray experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا