ﻻ يوجد ملخص باللغة العربية
We propose an algorithm for the efficient and robust sampling of the posterior probability distribution in Bayesian inference problems. The algorithm combines the local search capabilities of the Manifold Metropolis Adjusted Langevin transition kernels with the advantages of global exploration by a population based sampling algorithm, the Transitional Markov Chain Monte Carlo (TMCMC). The Langevin diffusion process is determined by either the Hessian or the Fisher Information of the target distribution with appropriate modifications for non positive definiteness. The present methods is shown to be superior over other population based algorithms, in sampling probability distributions for which gradients are available and is shown to handle otherwise unidentifiable models. We demonstrate the capabilities and advantages of the method in computing the posterior distribution of the parameters in a Pharmacodynamics model, for glioma growth and its drug induced inhibition, using clinical data.
Phylodynamics focuses on the problem of reconstructing past population size dynamics from current genetic samples taken from the population of interest. This technique has been extensively used in many areas of biology, but is particularly useful for
We introduce an efficient MCMC sampling scheme to perform Bayesian inference in the M/G/1 queueing model given only observations of interdeparture times. Our MCMC scheme uses a combination of Gibbs sampling and simple Metropolis updates together with
Modelling random dynamical systems in continuous time, diffusion processes are a powerful tool in many areas of science. Model parameters can be estimated from time-discretely observed processes using Markov chain Monte Carlo (MCMC) methods that intr
Bayesian inference for nonlinear diffusions, observed at discrete times, is a challenging task that has prompted the development of a number of algorithms, mainly within the computational statistics community. We propose a new direction, and accompan
We address the problem of providing inference from a Bayesian perspective for parameters selected after viewing the data. We present a Bayesian framework for providing inference for selected parameters, based on the observation that providing Bayesia