ﻻ يوجد ملخص باللغة العربية
We address the theory of the coupled lattice and magnetization dynamics of freely suspended single-domain nanoparticles. Magnetic anisotropy generates low-frequency satellite peaks in the microwave absorption spectrum and a blueshift of the ferromagnetic resonance (FMR) frequency. The low-frequency resonances are very sharp with maxima exceeding that of the FMR, because their magnetic and mechanical precessions are locked, thereby suppressing Gilbert damping. Magnetic nanoparticles can operate as nearly ideal motors that convert electromagnetic into mechanical energy. The Barnett/Einstein-de Haas effect is significant even in the absence of a net rotation.
We demonstrate excitation of ferromagnetic resonance in CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) by the combined action of voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (ST). Our measurements reveal that GHz-frequency
We study the effect of surface anisotropy on the spectrum of spin-wave excitations in a magnetic nanocluster and compute the corresponding absorbed power. For this, we develop a general numerical method based on the (undamped) Landau-Lifshitz equatio
The dynamic magnetic susceptibility of magnetic materials near ferromagnetic resonance (FMR) is very important in interpreting dc-voltage in electrical detection of FMR. Based on the causality principle and the assumption that the usual microwave abs
We present a study by ferromagnetic resonance at microwave Q band of two sheets of cobalt nanoparticles obtained by annealing SiO2 layers implanted with cobalt ions. This ex- perimental study is performed as a function of the applied magnetic field o
Biosensing with ferromagnet-based magnetoresistive devices has been dominated by electrical detection of particle-induced changes to the devices static magnetic configuration. There are however potential advantages to be gained from using field depen