ﻻ يوجد ملخص باللغة العربية
GeSn epitaxial heterostructures are emerging as prominent candidates for the monolithic integration of light sources on Si substrates. Here we propose a judicious explanation for their temperature-dependent photoluminescence (PL) that is based upon the so far disregarded optical activity of dislocations. By working at the onset of plastic relaxation, which occurs whenever the epilayer releases the strain accumulated during growth on the lattice mismatched substrate, we demonstrate that dislocation nucleation can be explicitly seen in the PL data. Notably, our findings point out that a monotonous thermal PL quenching can be observed in coherent films, in spite of the indirect nature of the GeSn bandgap. Our investigation, therefore, contributes to a deeper understanding of the recombination dynamics in this intriguing group IV alloy and offers insights into crucial phenomena shaping the light emission efficiency.
To determine the friction coefficient of graphene, micro-scale scratch tests are conducted on exfoliated and epitaxial graphene at ambient conditions. The experimental results show that the monolayer, bilayer, and trilayer graphene all yield friction
By coupling silicon nanowires (~150 nm diameter, 20 micron length) with an {Omega}-shaped plasmonic nanocavity we are able to generate broadband visible luminescence, which is induced by high-order hybrid nanocavity-surface plasmon modes. The nature
The effect of outdiffusion of Mn interstitials from (Ga,Mn)As epitaxial layers, caused by post-growth low-temperature annealing, on their electronic- and band-structure properties has been investigated by modulation photoreflectance (PR) spectroscopy
This article addresses the much debated question whether the degree of hydrophobicity of single-layer graphene (1LG) is different from the one of double-layer graphene (2LG). Knowledge of the water affinity of graphene and its spatial variations is c
Temperature dependent structural phase transitions of SrRuO3 thin films epitaxially grown on SrTiO3(001) single crystal substrates have been studied using high-resolution x-ray diffraction. In contrast to bulk SrRuO3, coherently strained epitaxial la