ﻻ يوجد ملخص باللغة العربية
Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equations of state, respectively. For the polytropic case we obtain the exact power series solution corresponding to arbitrary values of the polytropic index $n$. The explicit form of the solution is presented for the polytropic index $n=1$, and for the indexes $n=1/2$ and $n=1/5$, respectively. The case of $n=3$ is also considered. In each case the exact power series solution is compared with the exact numerical solutions, which are reproduced by the power series solutions truncated to seven terms only. The power series representations of the geometric and physical properties of the linear barotropic and polytropic stars are also obtained.
The characteristic formulation of the relativistic hydrodynamic equations (Donat et al 1998 J. Comput. Phys. 146 58), which has been implemented in many relativistic hydro-codes that make use of Godunov-type methods, has to be slightly modified in th
We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior spacetime of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition,
We study general dynamical equations describing homogeneous isotropic cosmologies coupled to a scalaron $psi$. For flat cosmologies ($k=0$), we analyze in detail the gauge-independent equation describing the differential, $chi(alpha)equivpsi^prime(al
We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations -- scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and
We present a new class of spherically symmetric spacetimes for matter distributions with anisotropic pressures in the presence of an electric field. The equation of state for the matter distribution is linear. A class of new exact solutions is found