ﻻ يوجد ملخص باللغة العربية
We construct eight implicit-explicit (IMEX) Runge-Kutta (RK) schemes up to third order of the type in which all stages are implicit so that they can be used in the zero relaxation limit in a unified and convenient manner. These all-stages-implicit (ASI) schemes attain the strong-stability-preserving (SSP) property in the limiting case, and two are SSP for not only the explicit part but also the implicit part and the entire IMEX scheme. Three schemes can completely recover to the designed accuracy order in two sides of the relaxation parameter for both equilibrium and non-equilibrium initial conditions. Two schemes converge nearly uniformly for equilibrium cases. These ASI schemes can be used for hyperbolic systems with stiff relaxation terms or differential equations with some type constraints.
When evolving in time the solution of a hyperbolic partial differential equation, it is often desirable to use high order strong stability preserving (SSP) time discretizations. These time discretizations preserve the monotonicity properties satisfie
In this work we present a class of high order unconditionally strong stability preserving (SSP) implicit multi-derivative Runge--Kutta schemes, and SSP implicit-explicit (IMEX) multi-derivative Runge--Kutta schemes where the time-step restriction is
Strong stability preserving (SSP) Runge-Kutta methods are desirable when evolving in time problems that have discontinuities or sharp gradients and require nonlinear non-inner-product stability properties to be satisfied. Unlike the case for L2 linea
We consider the development of high order space and time numerical methods based on Implicit-Explicit (IMEX) multistep time integrators for hyperbolic systems with relaxation. More specifically, we consider hyperbolic balance laws in which the convec
Strong stability preserving (SSP) Runge-Kutta methods are often desired when evolving in time problems that have two components that have very different time scales. Where the SSP property is needed, it has been shown that implicit and implicit-expli