ﻻ يوجد ملخص باللغة العربية
We proceed to study Yang-Baxter deformations of the AdS$_5times$S$^5$ superstring with the classical Yang-Baxter equation. We make a general argument on the supercoset construction and present the master formula to describe the dilaton in terms of classical $r$-matrices. The supercoset construction is explicitly performed for some classical $r$-matrices and the full backgrounds including the Ramond-Ramond (R-R) sector and dilaton are derived. Within the class of abelian $r$-matrices, the perfect agreement is shown for well-known examples including gravity duals of non-commutative gauge theories, $gamma$-deformations of S$^5$ and Schrodinger spacetimes. It would be remarkable that the supercoset construction works well, even if the resulting backgrounds are not maximally supersymmetric. In particular, three-parameter $gamma$-deformations of S$^5$ and Schrodinger spacetimes do not preserve any supersymmetries. As for non-abelian $r$-matrices, we will focus upon a specific example. The resulting background does not satisfy the equation of motion of the Neveu-Schwarz-Neveu-Schwarz (NS-NS) two-form because the R-R three-form is not closed.
We present homogeneous Yang-Baxter deformations of the AdS$_5times$S$^5$ supercoset sigma model as boundary conditions of a 4D Chern-Simons theory. We first generalize the procedure for the 2D principal chiral model developed by Delduc et al [arXiv:1
We explicitly derive Lax pairs for string theories on Yang-Baxter deformed backgrounds, 1) gravity duals for noncommutative gauge theories, 2) $gamma$-deformations of S$^5$, 3) Schrodinger spacetimes and 4) abelian twists of the global AdS$_5$,. Then
We study the strong coupling behaviour of $1/4$-BPS circular Wilson loops (a family of latitudes) in ${cal N}=4$ Super Yang-Mills theory, computing the one-loop corrections to the relevant classical string solutions in AdS$_5times$S$^5$. Supersymmetr
We study Yang-Baxter deformations of the Nappi-Witten model with a prescription invented by Delduc, Magro and Vicedo. The deformations are specified by skew-symmetric classical $r$-matrices satisfying (modified) classical Yang-Baxter equations. We sh
We consider so-called Yang-Baxter deformations of bosonic string sigma-models, based on an $R$-matrix solving the (modified) classical Yang-Baxter equation. It is known that a unimodularity condition on $R$ is sufficient for Weyl invariance at least