ترغب بنشر مسار تعليمي؟ اضغط هنا

A massive molecular outflow in the dense dust core AGAL G337.916-00.477

225   0   0.0 ( 0 )
 نشر من قبل Kazufumi Torii
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive molecular outflows erupting from high-mass young stellar objects provide important clues to understanding the mechanism of high-mass star formation. Based on new CO J=3-2 and J=1-0 observations using the Atacama Submillimeter Telescope Experiment (ASTE) and Mopra telescope facilities, we discovered a massive bipolar outflow associated with the dense dust core AGALG337.916-00.477 (AGAL337.9-S), located 3.48 kpc from the Sun. The outflow lobes have extensions of less than 1 pc -and thus were not fully resolved in the angular resolutions of ASTE and Mopra- and masses of 35-40 M_sun. The maximum velocities of the outflow lobes are as high as 35-40 km/s. Our analysis of the infrared and sub-mm data indicates that AGAL337.9-S is in an early evolutionary stage of the high-mass star formation, having the total far-infrared luminosity of ~5x10^4 L_sun. We also found that another dust core AGALG337.922-00.456 (AGAL337.9-N) located 2 north of AGAL337.9-S is a high-mass young stellar object in an earlier evolutional stage than AGAL337.9-S, although it is less bright in the mid-infrared than AGAL337.9-S.



قيم البحث

اقرأ أيضاً

Using APEX-1 and APEX-2 observations, we have detected and studied the rotational lines of the HC$_3$N molecule (cyanoacetylene) in the powerful outflow/hot molecular core G331.512-0.103. We identified thirty-one rotational lines at $J$ levels betwee n 24 and 39; seventeen of them in the ground vibrational state $v$=0 (9 lines corresponding to the main C isotopologue and 8 lines corresponding to the $^{13}$C isotopologues), and fourteen in the lowest vibrationally excited state $v_7$=1. Using LTE-based population diagrams for the beam-diluted $v$=0 transitions, we determined $T_{rm exc}$=85$pm$4 K and $N$(HC$_3$N)=(6.9$pm$0.8)$times$10$^{14}$ cm$^{-2}$, while for the beam-diluted $v_7$=1 transitions we obtained $T_{rm exc}$=89$pm$10 K and $N$(HC$_3$N)=2$pm$1$times$10$^{15}$ cm$^{-2}$. Non-LTE calculations using H$_2$ collision rates indicate that the HC$_3$N emission is in good agreement with LTE-based results. From the non-LTE method we estimated $T_{rm kin}$ $simeq$90~K, $n$(H$_2$)$simeq$2$times$10$^7$~cm$^{-3}$ for a central core of 6 arcsec in size. A vibrational temperature in the range from 130~K to 145~K was also determined, values which are very likely lower limits. Our results suggest that rotational transitions are thermalized, while IR radiative pumping processes are probably more efficient than collisions in exciting the molecule to the vibrationally excited state $v_7$=1. Abundance ratios derived under LTE conditions for the $^{13}$C isotopologues suggest that the main formation pathway of HC$_3$N is ${rm C}_2{rm H}_2 + {rm CN} rightarrow {rm HC}_3{rm N} + {rm H}$.
We present ALMA follow-up observations of two massive, early-stage core candidates, C1-N & C1-S, in Infrared Dark Cloud (IRDC) G028.37+00.07, which were previously identified by their N2D+(3-2) emission and show high levels of deuteration of this spe cies. The cores are also dark at far infrared wavelengths up to ~100 microns. We detect 12CO(2-1) from a narrow, highly-collimated bipolar outflow that is being launched from near the center of the C1-S core, which is also the location of the peak 1.3mm dust continuum emission. This protostar, C1-Sa, has associated dense gas traced by C18O(2-1) and DCN(3-2), from which we estimate it has a radial velocity that is near the center of the range exhibited by the C1-S massive core. A second outflow-driving source is also detected within the projected boundary of C1-S, but appears to be at a different radial velocity. After considering properties of the outflows, we conclude C1-Sa is a promising candidate for an early-stage massive protostar and as such it shows that these early phases of massive star formation can involve highly ordered outflow, and thus accretion, processes, similar to models developed to explain low-mass protostars.
We present interferometric observations of the CN(1-0) line emission in Mrk231 and combine them with previous observations of CO and other H$_2$ gas tracers to study the physical properties of the massive molecular outflow. We find a strong boost of the CN/CO(1-0) line luminosity ratio in the outflow, which is unprecedented compared to any other known Galactic or extragalactic source. For the dense gas phase in the outflow traced by the HCN and CN emissions, we infer $rm X_{rm CN}equiv [CN]/[H_2] > X_{rm HCN}$ by at least a factor of three, with H$_2$ gas densities of $n_{rm H_2}sim10^{5-6}$ cm$^{-3}$. In addition, for the first time, we resolve narrow spectral features in the HCN(1-0) and HCO$^+$(1-0) high-velocity line wings tracing the dense phase of the outflow. The velocity dispersions of these spectral features, $sigma_vsim7-20$ km s$^{-1}$, are consistent with those of massive extragalactic giant molecular clouds detected in nearby starburst nuclei. The H$_2$ gas masses inferred from the HCN data are quite high, $M_{mol}sim0.3-5times10^8$ $M_{odot}$. Our results suggest that massive, denser molecular gas complexes survive embedded into the more diffuse H$_2$ phase of the outflow, and that the chemistry of such outflowing dense clouds is affected by enhanced UV radiation.
We present Herschel, ALMA Compact Array (ACA), and Caltech Submillimeter Observatory (CSO) observations of the prestellar core in L1689N, which has been suggested to be interacting with a molecular outflow driven by the nearby solar type protostar IR AS 16293-2422. This source is characterized by some of the highest deuteration levels seen in the interstellar medium. The change in the NH2D line velocity and width across the core provides clear evidence of an interaction with the outflow, traced by the high-velocity water emission. Quiescent, cold gas, characterized by narrow line widths is seen in the NE part of the core, while broader, more disturbed line profiles are seen in the W/SW part. Strong N2D+ and ND3 emission is detected with the ACA, extending S/SW from the peak of the single-dish NH2D emission. The ACA data also reveal the presence a compact dust continuum source, with a mean size of ~1100 au, a central density of (1-2) 10^7 cm-3, and a mass of 0.2-0.4 Msun. The dust emission peak is displaced ~5 to the south with respect to the N2D+ and ND3 emission, as well as the single-dish dust continuum peak, suggesting that the northern, quiescent part of the core is characterized by spatially extended continuum emission, which is resolved out by the interferometer. We see no clear evidence of fragmentation in this quiescent part of the core, which could lead to a second generation of star formation, although a weak dust continuum source is detected in this region in the ACA data.
We observed the L1506 filament, which is located in the Taurus molecular complex, with the Herschel PACS and SPIRE instruments. Our aim is to prove the variation in grain properties along the entire length of the filament. In particular, we want to d etermine above which gas density this variation arises and what changes in the grain optical properties/size distribution are required. We use the 3D radiative transfer code CRT, coupled to the dust emission and extinction code DustEM, to model the emission and extinction of the dense filament. We test a range of optical properties and size distributions for the grains: dust of the diffuse interstellar medium (interstellar PAHs and amorphous carbons and silicates) and both compact and fluffy aggregates. We find that the grain opacity has to increase across the filament to fit simultaneously the near-IR extinction and Herschel emission profiles of L1506. We interpret this change to be a consequence of the coagulation of dust grains to form fluffy aggregates. Grains similar to those in the diffuse medium have to be present in the outer layers of the cloud, whereas aggregates must prevail above gas densities of a few 1000 H/cm3. This corresponds to line-of-sights with visual extinction in the V band of the order of 2 to 3. The dust opacity at 250 microns is raised by a factor of 1.8 to 2.2, while the grain average size is increased by a factor of 5. These exact numbers depend naturally on the dust model chosen to fit the data. Our findings agree with the constraints given by the study of the gas molecular lines. Using a simple approach, we show that the aggregates may have time to form inside the filament within the cloud lifetime. Our model also characterises the density structure of the filament, showing that the filament width is not constant along L1506 but instead varies by a factor of the order of 4.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا