ﻻ يوجد ملخص باللغة العربية
Bayesian graphical models are an efficient tool for modelling complex data and derive self-consistent expressions of the posterior distribution of model parameters. We apply Bayesian graphs to perform statistical analyses of Type Ia supernova (SN Ia) luminosity distance measurements from the joint light-curve analysis (JLA) data set. In contrast to the $chi^2$ approach used in previous studies, the Bayesian inference allows us to fully account for the standard-candle parameter dependence of the data covariance matrix. Comparing with $chi^2$ analysis results, we find a systematic offset of the marginal model parameter bounds. We demonstrate that the bias is statistically significant in the case of the SN Ia standardization parameters with a maximal 6 $sigma$ shift of the SN light-curve colour correction. In addition, we find that the evidence for a host galaxy correction is now only 2.4 $sigma$. Systematic offsets on the cosmological parameters remain small, but may increase by combining constraints from complementary cosmological probes. The bias of the $chi^2$ analysis is due to neglecting the parameter-dependent log-determinant of the data covariance, which gives more statistical weight to larger values of the standardization parameters. We find a similar effect on compressed distance modulus data. To this end, we implement a fully consistent compression method of the JLA data set that uses a Gaussian approximation of the posterior distribution for fast generation of compressed data. Overall, the results of our analysis emphasize the need for a fully consistent Bayesian statistical approach in the analysis of future large SN Ia data sets.
We analyze the three-year SDSS-II Superernova (SN) Survey data and identify a sample of 1070 photometric SN Ia candidates based on their multi-band light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a sub
The standard cosmology strongly relies upon the Cosmological Principle, which consists on the hypotheses of large scale isotropy and homogeneity of the Universe. Testing these assumptions is, therefore, crucial to determining if there are deviations
We perform a model independent reconstruction of the cosmic expansion rate based on type Ia supernova data. Using the Union 2.1 data set, we show that the Hubble parameter behaviour allowed by the data without making any hypothesis about cosmological
The large spectral bandwidth and wide field of view of the Australian SKA Pathfinder radio telescope will open up a completely new parameter space for large extragalactic HI surveys. Here we focus on identifying and parametrising HI absorption lines
Much of the cosmological utility thus far extracted from Type Ia supernovae (SNe Ia) relies on the assumption that SN~Ia peak luminosities do not evolve significantly with the age (local or global) of their stellar environments. Two recent studies ha