ترغب بنشر مسار تعليمي؟ اضغط هنا

Hamburger moment sequences and their moment subsequences

71   0   0.0 ( 0 )
 نشر من قبل Hayoung Choi
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper a connection between Hamburger moment sequences and their moment subsequences is given and the determinacy of these problems are related.



قيم البحث

اقرأ أيضاً

In this paper we show that many well-known counting coefficients, including the Catalan numbers, the Motzkin numbers, the central binomial coefficients, the central Delannoy numbers are Hausdorff moment sequences in a unified approach. In particular we answer a conjecture of Liang at al. which such numbers have unique representing measures. The smallest interval including the support of representing measure is explicitly found. Subsequences of Catalan-like numbers are also considered. We provide a necessary and sufficient condition for a pattern of subsequences that if sequences are the Stieltjes Catalan-like numbers, then their subsequences are Stieltjes Catalan-like numbers. Moreover, a representing measure of a linear combination of consecutive Catalan-like numbers is studied.
Let $gamma$ be the standard Gaussian measure on $mathbb{R}^n$ and let $mathcal{P}_{gamma}$ be the space of probability measures that are absolutely continuous with respect to $gamma$. We study lower bounds for the functional $mathcal{F}_{gamma}(mu) = {rm Ent}(mu) - frac{1}{2} W^2_2(mu, u)$, where $mu in mathcal{P}_{gamma}, u in mathcal{P}_{gamma}$, ${rm Ent}(mu) = int logbigl( frac{mu}{gamma}bigr) d mu$ is the relative Gaussian entropy, and $W_2$ is the quadratic Kantorovich distance. The minimizers of $mathcal{F}_{gamma}$ are solutions to a dimension-free Gaussian analog of the (real) Kahler-Einstein equation. We show that $mathcal{F}_{gamma}(mu) $ is bounded from below under the assumption that the Gaussian Fisher information of $ u$ is finite and prove a priori estimates for the minimizers. Our approach relies on certain stability estimates for the Gaussian log-Sobolev and Talagrand transportation inequalities.
The class of generating functions for completely monotone sequences (moments of finite positive measures on $[0,1]$) has an elegant characterization as the class of Pick functions analytic and positive on $(-infty,1)$. We establish this and another s uch characterization and develop a variety of consequences. In particular, we characterize generating functions for moments of convex and concave probability distribution functions on $[0,1]$. Also we provide a simple analytic proof that for any real $p$ and $r$ with $p>0$, the Fuss-Catalan or Raney numbers $frac{r}{pn+r}binom{pn+r}{n}$, $n=0,1,ldots$ are the moments of a probability distribution on some interval $[0,tau]$ {if and only if} $pge1$ and $pge rge 0$. The same statement holds for the binomial coefficients $binom{pn+r-1}n$, $n=0,1,ldots$.
65 - Volodymyr Tesko 2016
Let $ast_P$ be a product on $l_{rm{fin}}$ (a space of all finite sequences) associated with a fixed family $(P_n)_{n=0}^{infty}$ of real polynomials on $mathbb{R}$. In this article, using methods from the theory of generalized eigenvector expansion, we investigate moment-type properties of $ast_P$-positive functionals on $l_{rm{fin}}$. If $(P_n)_{n=0}^{infty}$ is a family of the Newton polynomials $P_n(x)=prod_{i=0}^{n-1}(x-i)$ then the corresponding product $star=ast_P$ is an analog of the so-called Kondratiev--Kuna convolution on a Fock space. We get an explicit expression for the product $star$ and establish a connection between $star$-positive functionals on $l_{rm{fin}}$ and a one-dimensional analog of the Bogoliubov generating functionals (the classical Bogoliubov functionals are defined correlation functions for statistical mechanics systems).
The moment operators of a semispectral measure having the structure of the convolution of a positive measure and a semispectral measure are studied, with paying attention to the natural domains of these unbounded operators. The results are then appli ed to conveniently determine the moment operators of the Cartesian margins of the phase space observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا