ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for Brief Optical Flashes Associated with the SETI Target KIC 8462852

315   0   0.0 ( 0 )
 نشر من قبل Jamie Holder
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The F-type star KIC 8462852 has recently been identified as an exceptional target for SETI (search for extraterrestrial intelligence) observations. We describe an analysis methodology for optical SETI, which we have used to analyse nine hours of serendipitous archival observations of KIC 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon per m^2, is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.



قيم البحث

اقرأ أيضاً

107 - Marlin Schuetz 2015
To explore the hypothesis that KIC 8462852s aperiodic dimming is caused by artificial megastructures in orbit (Wright et al. 2015), rather than a natural cause such as cometary fragments in a highly elliptical orbit (Marengo et al. 2015), we searched for electromagnetic signals from KIC 8462852 indicative of extraterrestrial intelligence. The primary observations were in the visible optical regime using the Boquete Optical SETI Observatory in Panama. In addition, as a preparatory exercise for the possible future detection of a candidate signal (Heidmann 1991), three of six observing runs simultaneously searched radio frequencies at the Allen Telescope Array in California. No periodic optical signals greater than 67 photons/m2 within a time frame of 25 ns were seen. This limit corresponds to isotropic optical pulses of 8E22 joules. If, however, any inhabitants of KIC 8462852 were targeting our solar system (Shostak & Villard 2004), the required energy would be reduced greatly. The limits on narrowband radio signals were 180 - 300 Jy Hz at 1 and 8 GHz, respectively, corresponding to a transmitter with an effective isotropic radiated power of 4E15 W (and 7E15 W) at the distance of KIC 8462852. While these powers requirements are high, even modest targeting could - just as for optical signals - lower these numbers substantially.
We report on a search for the presence of signals from extraterrestrial intelligence in the direction of the star system KIC 8462852. Observations were made at radio frequencies between 1-10 GHz using the Allen Telescope Array. No narrowband radio si gnals were found at a level of 180-300 Jy in a 1 Hz channel, or medium band signals above 10 Jy in a 100 kHz channel.
Following the results of our previous low frequency searches for extraterrestrial intelligence (SETI) using the Murchison Widefield Array (MWA), directed toward the Galactic Centre and the Orion Molecular Cloud (Galactic Anticentre), we report a new large-scale survey toward the Vela region with the lowest upper limits thus far obtained with the MWA. Using the MWA in the frequency range 98-128 MHz over a 17 hour period, a $sim$400 deg$^2$ field centred on the Vela Supernova Remnant was observed with a frequency resolution of 10 kHz. Within this field there are six known exoplanets. At the positions of these exoplanets, we searched for narrow band signals consistent with radio transmissions from intelligent civilizations. No unknown signals were found with a 5sigma detection threshold. In total, across this work plus our two previous surveys, we have now examined 75 known exoplanets at low frequencies. In addition to the known exoplanets, we have included in our analysis the calculation of the Effective Isotropic Radiated Power (EIRP) upper limits toward over 10 million stellar sources in the Vela field with known distances from Gaia (assuming a 10 kHz transmission bandwidth).
We present optical polarimetry in the period May-August 2017 of the enigmatic dipping star KIC 8462852. During that period three ~1% photometric dips were reported by other observers. We measured the average absolute polarization of the source, and f ind no excess or unusual polarization compared to a nearby comparison star. We place tight upper limits on any change in the degree of polarization of the source between epochs in- and out-of-dip of <0.1% (8500-Ang.) and <0.2% (7050-Ang. and 5300-Ang.). How our limits are interpreted depends on the specific model being considered. If the whole stellar disk were covered by material with an optical depth of ~0.01 then the fractional polarisation introduced by this material must be less than 10-20%. While our non-detection does not constrain the comet scenario, it predicts that even modest amounts of dust that have properties similar to Solar System comets may be detectable. We note that the sensitivity of our method scales with the depth of the dip. Should a future ~20% photometric dip be observed (as was previously detected by Kepler) our method would constrain any induced polarization associated with any occulting material to 0.5-1.0%.
Over the duration of the Kepler mission, KIC8462852 was observed to undergo irregularly shaped, aperiodic dips in flux of up to $sim 20$%. The dipping activity can last for between 5 and 80 days. We characterize the object with high-resolution spectr oscopy, spectral energy distribution fitting, radial velocity measurements, high-resolution imaging, and Fourier analyses of the Kepler light curve. We determine that KIC8462852 is a typical main-sequence F3 V star that exhibits no significant IR excess, and has no very close interacting companions. In this paper, we describe various scenarios to explain the dipping events observed in the Kepler light curve. We confirm that the dipping signals in the data are not caused by any instrumental or data processing artifact, and thus are astrophysical in origin. We construct scenario-independent constraints on the size and location of a body in the system that is needed to reproduce the observations. We deliberate over several assorted stellar and circumstellar astrophysical scenarios, most of which have problems explaining the data in hand. By considering the observational constraints on dust clumps in orbit around a normal main-sequence star, we conclude that the scenario most consistent with the data in hand is the passage of a family of exocomet or planetesimal fragments, all of which are associated with a single previous break-up event, possibly caused by tidal disruption or thermal processing. The minimum total mass associated with these fragments likely exceeds $10^{-6}$~mearth, corresponding to an original rocky body of $>100$~km in diameter. We discuss the necessity of future observations to help interpret the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا