ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio follow-up of the gamma-ray flaring gravitational lens JVAS B0218+357

115   0   0.0 ( 0 )
 نشر من قبل Cristiana Spingola
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results on multifrequency Very Long Baseline Array (VLBA) monitoring observations of the double-image gravitationally lensed blazar JVAS B0218+357. Multi-epoch observations started less than one month after the gamma-ray flare detected in 2012 by the Large Area Telescope on board Fermi, and spanned a 2-month interval. The radio light curves did not reveal any significant flux density variability, suggesting that no clear correlation between the high energy and low-energy emission is present. This behaviour was confirmed also by the long-term Owens Valley Radio Observatory monitoring data at 15 GHz. The milliarcsecond-scale resolution provided by the VLBA observations allowed us to resolve the two images of the lensed blazar, which have a core-jet structure. No significant morphological variation is found by the analysis of the multi-epoch data, suggesting that the region responsible for the gamma-ray variability is located in the core of the AGN, which is opaque up to the highest observing frequency of 22 GHz.

قيم البحث

اقرأ أيضاً

186 - R. Mittal 2004
We present the results of phase-referenced VLBA+Effelsberg observations at five frequencies of the gravitational lens B0218+357 to establish the precise registration of the A and B lensed image positions.
We observed the gravitationally lensed blazar JVAS B0218+357 with the KVN and VERA Array (KaVA) at 22, 43, and 86 GHz. The source has recently been identified as an active gamma-ray source up to GeV/TeV energy bands, rendering a unique target for stu dying relativistic jets through gravitational lensing. Here we report the first robust VLBI detection and imaging of the lensed images up to 86 GHz. The detected mas-scale/parsec-scale morphology of the individual lensed images (A and B) is consistent with that previously seen at 22 and 15 GHz, showing the core-jet morphology with the jet direction being the same as at the low frequencies. The radio spectral energy distributions of the lensed images become steeper at higher frequencies, indicating that the innermost jet regions become optically thin to synchrotron emission. Our findings confirm that the absorption effects due to the intervening lensing galaxy become negligible at millimeter wavelengths. These results indicate that high-frequency VLBI observations are a powerful tool to better recover the intrinsic properties of lensed active galactic nucleus jets, which therefore allow us to study the interplay between the low- and high-energy emission.
We address the issue of anomalous image flux ratios seen in the double-image gravitational lens JVAS B0218+357. From the multi-frequency observations presented in a recent study (Mittal et al. 2006) and several previous observations made by other aut hors, the anomaly is well-established in that the image flux-density ratio (A/B) decreases from 3.9 to 2.0 over the observed frequency range from 15 GHz to 1.65 GHz. In Mittal et al. (2006), the authors investigated whether an interplay between a frequency-dependent structure of the background radio-source and a gradient in the relative image-magnification can explain away the anomaly. Insufficient shifts in the image centroids with frequency led them to discard the above effect as the cause of the anomaly. In this paper, we first take this analysis further by evaluating the combined effect of the background source extension and magnification gradients in the lens plane in more detail. This is done by making a direct use of the observed VLBI flux-distributions for each image to estimate the image flux-density ratios at different frequencies from a lens-model. As a result of this investigation, this mechanism does not account for the anomaly. Following this, we analyze the effects of mechanisms which are non-gravitational in nature on the image flux ratios in B0218+357. These are free-free absorption and scattering, and are assumed to occur under the hypothesis of a molecular cloud residing in the lens galaxy along the line-of-sight to image A. We show that free-free absorption due to an H II region covering the entire structure of image A at 1.65 GHz can explain the image flux ratio anomaly. We also discuss whether H II regions with physical parameters as derived from our analysis are consistent with those observed in Galactic and extragalactic H II regions.
We present the results of phase-referenced VLBA+Effelsberg observations at five frequencies of the double-image gravitational lens JVAS B0218+357, made to establish the precise registration of the A and B lensed image positions. The motivation behind these observations is to investigate the anomalous variation of the image flux density ratio (A/B) with frequency - this ratio changes by almost a factor of two over a frequency range from 1.65 GHz to 15.35 GHz. We investigate whether frequency dependent image positions, combined with a magnification gradient across the image field, could give rise to the anomaly. Our observations confirm the variation of image flux ratio with frequency. The results from our phase-reference astrometry, taken together with the lens mass model of Wucknitz et al. (2004), show that shifts of the image peaks and centroids are too small to account for the observed frequency-dependent ratio.
Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed syste m, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach >20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 +/- 0.16 days (1 sigma) that is ~1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such ~8-10 day-long sequences within a ~4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with ~1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of ~3-6 hrs implying as well extremely compact gamma-ray emitting regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا