ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffuse X-ray emission from star forming galaxies

223   0   0.0 ( 0 )
 نشر من قبل Kartick Chandra Sarkar
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the diffuse X-ray luminosity ($L_X$) of star forming galaxies using 2-D axisymmetric hydrodynamical simulations and analytical considerations of supernovae (SNe) driven galactic outflows. We find that the mass loading of the outflows, a crucial parameter for determining the X-ray luminosity, is constrained by the availability of gas in the central star forming region, and a competition between cooling and expansion. We show that the allowed range of the mass loading factor can explain the observed scaling of $L_X$ with star formation rate (SFR) as $L_X propto$ SFR$^2$ for SFR $gtrsim 1$ M$_odot$yr$^{-1}$, and a flatter relation at low SFRs. We also show that the emission from the hot circumgalactic medium (CGM) in the halo of massive galaxies can explain the sub-linear behaviour of the $L_X-$SFR relation as well as a large scatter in the diffuse X-ray emission for low SFRs ($lesssim$ few M$_odot$yr$^{-1}$). Our results point out that galaxies with small SFRs and large diffuse X-ray luminosities are excellent candidates for detection of the elusive CGM.



قيم البحث

اقرأ أيضاً

317 - S. Mineo 2011
Based on a homogeneous set of X-ray, infrared and ultraviolet observations from Chandra, Spitzer, GALEX and 2MASS archives, we study populations of high-mass X-ray binaries (HMXBs) in a sample of 29 nearby star-forming galaxies and their relation wit h the star formation rate (SFR). In agreement with previous results, we find that HMXBs are a good tracer of the recent star formation activity in the host galaxy and their collective luminosity and number scale with the SFR, in particular, Lx~2.6 10^{39} SFR. However, the scaling relations still bear a rather large dispersion of ~0.4 dex, which we believe is of a physical origin. We present the catalog of 1057 X-ray sources detected within the $D25$ ellipse for galaxies of our sample and construct the average X-ray luminosity function (XLF) of HMXBs with substantially improved statistical accuracy and better control of systematic effects than achieved in previous studies. The XLF follows a power law with slope of 1.6 in the logLx~35-40 luminosity range with a moderately significant evidence for a break or cut-off at Lx~10^{40} erg/s. As before, we did not find any features at the Eddington limit for a neutron star or a stellar mass black hole. We discuss implications of our results for the theory of binary evolution. In particular we estimate the fraction of compact objects that once upon their lifetime experienced an X-ray active phase powered by accretion from a high mass companion and obtain a rather large number, fx~0.2 (0.1 Myr/tau_x) (tau_x is the life time of the X-ray active phase). This is ~4 orders of magnitude more frequent than in LMXBs. We also derive constrains on the mass distribution of the secondary star in HMXBs.
We study the emission from the hot interstellar medium in a sample of nearby late type galaxies defined in Paper I. Our sample covers a broad range of star formation rates, from ~0.1 Msun/yr to ~17 Msun/yr and stellar masses, from ~3x10^8 Msun to ~6x 10^10 Msun. We take special care of systematic effects and contamination from bright and faint compact sources. We find that in all galaxies at least one optically thin thermal emission component is present in the unresolved emission, with the average temperature of <kT>= 0.24 keV. In about ~1/3 of galaxies, a second, higher temperature component is required, with the <kT>= 0.71 keV. Although statistically significant variations in temperature between galaxies are present, we did not find any meaningful trends with the stellar mass or star formation rate of the host galaxy. The apparent luminosity of the diffuse emission in the 0.5-2 keV band linearly correlates with the star formation rate with the scale factor of Lx/SFRapprox 8.3x10^38 erg/s per Msun/yr, of which in average ~30-40% is likely produced by faint compact sources of various types. We attempt to estimate the bolometric luminosity of the gas and and obtained results differing by an order of magnitude, log(Lbol/SFR)sim39-40, depending on whether intrinsic absorption in star-forming galaxies was allowed or not. Our theoretically most accurate, but in practice the most model dependent result for the intrinsic bolometric luminosity of ISM is Lbol/SFRsim 1.5x10^40 erg/s per Msun/yr. Assuming that core collapse supernovae are the main source of energy, it implies that epsilon_SNsim5x10^-2 (E_SN/10^51)^-1 of mechanical energy of supernovae is converted into thermal energy of ISM.
A majority of the $gamma$-ray emission from star-forming galaxies is generated by the interaction of high-energy cosmic rays with the interstellar gas and radiation fields. Star-forming galaxies are expected to contribute to both the extragalactic $g amma$-ray background and the IceCube astrophysical neutrino flux. Using roughly 10,years of $gamma$-ray data taken by the {it Fermi} Large Area Telescope, in this study we constrain the $gamma$-ray properties of star-forming galaxies. We report the detection of 11 bona-fide $gamma$-ray emitting galaxies and 2 candidates. Moreover, we show that the cumulative $gamma$-ray emission of below-threshold galaxies is also significantly detected at $sim$5,$sigma$ confidence. The $gamma$-ray luminosity of resolved and unresolved galaxies is found to correlate with the total (8-1000,$mu$m) infrared luminosity as previously determined. Above 1,GeV, the spectral energy distribution of resolved and unresolved galaxies is found to be compatible with a power law with a photon index of $approx2.2-2.3$. Finally, we find that star-forming galaxies account for roughly 5,% and 3,% of the extragalactic $gamma$-ray background and the IceCube neutrino flux, respectively.
142 - C. Pfrommer 2017
Star forming galaxies emit GeV- and TeV-gamma rays that are thought to originate from hadronic interactions of cosmic-ray (CR) nuclei with the interstellar medium. To understand the emission, we have used the moving mesh code Arepo to perform magneto -hydrodynamical galaxy formation simulations with self-consistent CR physics. Our galaxy models exhibit a first burst of star formation that injects CRs at supernovae. Once CRs have sufficiently accumulated in our Milky-Way like galaxy, their buoyancy force overcomes the magnetic tension of the toroidal disk field. As field lines open up, they enable anisotropically diffusing CRs to escape into the halo and to accelerate a bubble-like, CR-dominated outflow. However, these bubbles are invisible in our simulated gamma-ray maps of hadronic pion-decay and secondary inverse-Compton emission because of low gas density in the outflows. By adopting a phenomenological relation between star formation rate (SFR) and far-infrared emission and assuming that gamma rays mainly originate from decaying pions, our simulated galaxies can reproduce the observed tight relation between far-infrared and gamma-ray emission, independent of whether we account for anisotropic CR diffusion. This demonstrates that uncertainties in modeling active CR transport processes only play a minor role in predicting gamma-ray emission from galaxies. We find that in starbursts, most of the CR energy is calorimetrically lost to hadronic interactions. In contrast, the gamma-ray emission deviates from this calorimetric property at low SFRs due to adiabatic losses, which cannot be identified in traditional one-zone models.
113 - Yuichiro Ezoe 2005
Chandra ACIS-I data of the molecular cloud and HII region complex NGC 6334 were analyzed. The hard X-ray clumps detected with ASCA (Sekimoto et al. 2000) were resolved into 792 point sources. After removing the point sources, an extended X-ray emissi on component was detected over a 5x9 pc2 region, with the 0.5-8 keV absorption-corrected luminosity of 2x10^33 erg/s. The contribution from faint point sources to this extended emission was estimated as at most ~20 %, suggesting that most of the emission is diffuse in nature. The X-ray spectrum of the diffuse emission was observed to vary from place to place. In tenuous molecular cloud regions with hydrogen column density of 0.5~1x10^22 cm-2, the spectrum can be represented by a thermal plasma model with temperatures of several keV. The spectrum in dense cloud cores exhibits harder continuum, together with higher absorption more than ~3x10^22 cm-2. In some of such highly obscured regions, the spectrum show extremely hard continua equivalent to a photon index of ~1, and favor non-thermal interpretation. These results are discussed in the context of thermal and non-thermal emissions, both powered by fast stellar winds from embedded young early-type stars through shock transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا