ﻻ يوجد ملخص باللغة العربية
We find multipullback quantum odd-dimensional spheres equipped with natural $U(1)$-actions that yield the multipullback quantum complex projective spaces constructed from Toeplitz cubes as noncommutative quotients. We prove that the noncommutative line bundles associated to multipullback quantum odd spheres are pairwise stably non-isomorphic, and that the $K$-groups of multipullback quantum complex projective spaces and odd spheres coincide with their classical counterparts. We show that these $K$-groups remain the same for more general twist
The $K_0$-group of the C*-algebra of multipullback quantum complex projective plane is known to be $mathbb{Z}^3$, with one generator given by the C*-algebra itself, one given by the section module of the noncommutative (dual) tautological line bundle
In this paper, we develop differential twisted K-theory and define a twisted Chern character on twisted K-theory which depends on a choice of connection and curving on the twisting gerbe. We also establish the general Riemann-Roch theorem in twisted
There is an equivalence relation on the set of smooth maps of a manifold into the stable unitary group, defined using a Chern-Simons type form, whose equivalence classes form an abelian group under ordinary block sum of matrices. This construction is
We study twisted $Spin^c$-manifolds over a paracompact Hausdorff space $X$ with a twisting $alpha: X to K(ZZ, 3)$. We introduce the topological index and the analytical index on the bordism group of $alpha$-twisted $Spin^c$-manifolds over $(X, alpha)
For G a finite group and X a G-space on which a normal subgroup A acts trivially, we show that the G-equivariant K-theory of X decomposes as a direct sum of twisted equivariant K-theories of X parametrized by the orbits of the conjugation action of G