ﻻ يوجد ملخص باللغة العربية
The study of reionization history plays an important role in understanding the evolution of our universe. It is commonly believed that the intergalactic medium (IGM) in our universe are fully ionized today, however the reionizing process remains to be mysterious. A simple instantaneous reionization process is usually adopted in modern cosmology without direct observational evidence. However, the history of ionization fraction, $x_e(z)$ will influence cosmic microwave background (CMB) observables and constraints on optical depth $tau$. With the mocked future data sets based on featured reionization model, we find the bias on $tau$ introduced by instantaneous model can not be neglected. In this paper, we study the cosmic reionization history in a model independent way, the so called principle component analysis (PCA) method, and reconstruct $x_e (z)$ at different redshift $z$ with the data sets of Planck, WMAP 9 years temperature and polarization power spectra, combining with the baryon acoustic oscillation (BAO) from galaxy survey and type Ia supernovae (SN) Union 2.1 sample respectively. The results show that reconstructed $x_e(z)$ is consistent with instantaneous behavior, however, there exists slight deviation from this behavior at some epoch. With PCA method, after abandoning the noisy modes, we get stronger constraints, and the hints for featured $x_e(z)$ evolution could become a little more obvious.
Dark matter constitutes the great majority of the matter content in the Universe, but its microscopic nature remains an intriguing mystery, with profound implications for particle physics, astrophysics and cosmology. Here we shed light on the longsta
Using a semi-analytical model developed by Choudhury & Ferrara (2005) we study the observational constraints on reionization via a principal component analysis (PCA). Assuming that reionization at z>6 is primarily driven by stellar sources, we decomp
In the last decade, the study of the overall shape of the universe, called Cosmic Topology, has become testable by astronomical observations, especially the data from the Cosmic Microwave Background (hereafter CMB) obtained by WMAP and Planck telesco
We present new constraints on the relativistic neutrino effective number N_eff and on the Cosmic Microwave Background power spectrum lensing amplitude A_L from the recent Planck 2013 data release. Including observations of the CMB large angular scale
Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP an by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole m