ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Reionization Study : Principle Component Analysis After Planck

373   0   0.0 ( 0 )
 نشر من قبل Yang Liu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of reionization history plays an important role in understanding the evolution of our universe. It is commonly believed that the intergalactic medium (IGM) in our universe are fully ionized today, however the reionizing process remains to be mysterious. A simple instantaneous reionization process is usually adopted in modern cosmology without direct observational evidence. However, the history of ionization fraction, $x_e(z)$ will influence cosmic microwave background (CMB) observables and constraints on optical depth $tau$. With the mocked future data sets based on featured reionization model, we find the bias on $tau$ introduced by instantaneous model can not be neglected. In this paper, we study the cosmic reionization history in a model independent way, the so called principle component analysis (PCA) method, and reconstruct $x_e (z)$ at different redshift $z$ with the data sets of Planck, WMAP 9 years temperature and polarization power spectra, combining with the baryon acoustic oscillation (BAO) from galaxy survey and type Ia supernovae (SN) Union 2.1 sample respectively. The results show that reconstructed $x_e(z)$ is consistent with instantaneous behavior, however, there exists slight deviation from this behavior at some epoch. With PCA method, after abandoning the noisy modes, we get stronger constraints, and the hints for featured $x_e(z)$ evolution could become a little more obvious.



قيم البحث

اقرأ أيضاً

62 - A. Lapi (1 , 2 , 3 2015
Dark matter constitutes the great majority of the matter content in the Universe, but its microscopic nature remains an intriguing mystery, with profound implications for particle physics, astrophysics and cosmology. Here we shed light on the longsta nding issue of whether the dark matter is warm or cold by combining the measurements of the galaxy luminosity functions out to high redshifts z~10 from the Hubble Space Telescope with the recent cosmological data on the reionization history of the Universe from the Planck mission. We derive robust and tight bounds on the mass of warm dark matter particle, finding that the current data require it to be in the narrow range between 2 and 3 keV. In addition, we show that a mass not exceeding 3 keV is also concurrently indicated by astrophysical constraints related to the local number of satellites in Milky Way-sized galaxies, though it is in marginal tension with analysis of the Lyman-alpha forest. For warm dark matter masses above 3 keV as well as for cold dark matter, to satisfy the Planck constraints on the optical depth and not to run into the satellite problem would require invoking astrophysical processes that inhibit galaxy formation in halos with mass M_H< a few 10^8 M_sun, corresponding to a limiting UV magnitude M_UV~-11. Anyway, we predict a downturn of the galaxy luminosity function at z~8 faintward of M_UV~-12, and stress that its detailed shape is extremely informative both on particle physics and on the astrophysics of galaxy formation in small halos. These expectations will be tested via the Hubble Frontier Fields and with the advent of the James Webb Space Telescope, which will enable probing the very faint end of the galaxy luminosity function out to z~8-10.
Using a semi-analytical model developed by Choudhury & Ferrara (2005) we study the observational constraints on reionization via a principal component analysis (PCA). Assuming that reionization at z>6 is primarily driven by stellar sources, we decomp ose the unknown function N_{ion}(z), representing the number of photons in the IGM per baryon in collapsed objects, into its principal components and constrain the latter using the photoionization rate obtained from Ly-alpha forest Gunn-Peterson optical depth, the WMAP7 electron scattering optical depth and the redshift distribution of Lyman-limit systems at z sim 3.5. The main findings of our analysis are: (i) It is sufficient to model N_{ion}(z) over the redshift range 2<z<14 using 5 parameters to extract the maximum information contained within the data. (ii) All quantities related to reionization can be severely constrained for z<6 because of a large number of data points whereas constraints at z>6 are relatively loose. (iii) The weak constraints on N_{ion}(z) at z>6 do not allow to disentangle different feedback models with present data. There is a clear indication that N_{ion}(z) must increase at z>6, thus ruling out reionization by a single stellar population with non-evolving IMF, and/or star-forming efficiency, and/or photon escape fraction. The data allows for non-monotonic N_{ion}(z) which may contain sharp features around z sim 7. (iv) The PCA implies that reionization must be 99% completed between 5.8<z<10.3 (95% confidence level) and is expected to be 50% complete at z approx 9.5-12. With future data sets, like those obtained by Planck, the z>6 constraints will be significantly improved.
In the last decade, the study of the overall shape of the universe, called Cosmic Topology, has become testable by astronomical observations, especially the data from the Cosmic Microwave Background (hereafter CMB) obtained by WMAP and Planck telesco pes. Cosmic Topology involves both global topological features and more local geometrical properties such as curvature. It deals with questions such as whether space is finite or infinite, simply-connected or multi-connected, and smaller or greater than its observable counterpart. A striking feature of some relativistic, multi-connected small universe models is to create multiples images of faraway cosmic sources. While the last CMB (Planck) data fit well the simplest model of a zero-curvature, infinite space model, they remain consistent with more complex shapes such as the spherical Poincare Dodecahedral Space, the flat hypertorus or the hyperbolic Picard horn. We review the theoretical and observational status of the field.
We present new constraints on the relativistic neutrino effective number N_eff and on the Cosmic Microwave Background power spectrum lensing amplitude A_L from the recent Planck 2013 data release. Including observations of the CMB large angular scale polarization from the WMAP satellite, we obtain the bounds N_eff = 3.71 +/- 0.40 and A_L = 1.25 +/- 0.13 at 68% c.l.. The Planck dataset alone is therefore suggesting the presence of a dark radiation component at 91.1% c.l. and hinting for a higher power spectrum lensing amplitude at 94.3% c.l.. We discuss the agreement of these results with the previous constraints obtained from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). Considering the constraints on the cosmological parameters, we found a very good agreement with the previous WMAP+SPT analysis but a tension with the WMAP+ACT results, with the only exception of the lensing amplitude.
Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP an by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole m oments with one another and with the motion and geometry of the Solar System, a hemispherical power asymmetry or dipolar power modulation, a preference for odd parity modes and an unexpectedly large cold spot in the Southern hemisphere. The individual p-values of the significance of these features are in the per mille to per cent level, when compared to the expectations of the best-fit inflationary $Lambda$CDM model. Some pairs of those features are demonstrably uncorrelated, increasing their combined statistical significance and indicating a significant detection of CMB features at angular scales larger than a few degrees on top of the standard model. Despite numerous detailed investigations, we still lack a clear understanding of these large-scale features, which seem to imply a violation of statistical isotropy and scale invariance of inflationary perturbations. In this contribution we present a critical analysis of our current understanding and discuss several ideas of how to make further progress.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا