ﻻ يوجد ملخص باللغة العربية
We are concerned with the two-dimensional steady supersonic reacting Euler flow past Lipschitz bending walls that are small perturbations of a convex one, and establish the existence of global entropy solutions when the total variation of both the initial data and the slope of the boundary is sufficiently small. The flow is governed by an ideal polytropic gas and undergoes a one-step exothermic chemical reaction under the reaction rate function that is Lipschtiz and has a positive lower bound. The heat released by the reaction may cause the total variation of the solution to increase along the flow direction. We employ the modified wave-front tracking scheme to construct approximate solutions and develop a Glimm-type functional by incorporating the approximate strong rarefaction waves and Lipschitz bending walls to obtain the uniform bound on the total variation of the approximate solutions. Then we employ this bound to prove the convergence of the approximate solutions to a global entropy solution that contains a strong rarefaction wave generated by the Lipschitz bending wall. In addition, the asymptotic behavior of the entropy solution in the flow direction is also analyzed.
We are concerned with the structural stability of conical shocks in the three-dimensional steady supersonic flows past Lipschitz perturbed cones whose vertex angles are less than the critical angle. The flows under consideration are governed by the s
For an upstream supersonic flow past a straight-sided cone in $R^3$ whose vertex angle is less than the critical angle, a transonic (supersonic-subsonic) shock-front attached to the cone vertex can be formed in the flow. In this paper we analyze the
We are concerned with the stability of multidimensional (M-D) transonic shocks in steady supersonic flow past multidimensional wedges. One of our motivations is that the global stability issue for the M-D case is much more sensitive than that for the
Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional defocusing nonlinear Schrodinger (NLS) equation. This problem is of fundamental importance as a dispersive analogue of
We exploit a two-dimensional model [7], [6] and [1] describing the elastic behavior of the wall of a flexible blood vessel which takes interaction with surrounding muscle tissue and the 3D fluid flow into account. We study time periodic flows in a cy