ﻻ يوجد ملخص باللغة العربية
We study the surface fluctuations of a tissue with a dynamics dictated by cell-rearrangement, cell-division, and cell-death processes. Surface fluctuations are calculated in the homeostatic state, where cell division and cell death equilibrate on average. The obtained fluctuation spectrum can be mapped onto several other spectra such as those characterizing incompressible fluids, compressible Maxwell elastomers, or permeable membranes in appropriate asymptotic regimes. Since cell division and cell death are out-of-equilibrium processes, detailed balance is broken, but a generalized fluctuation-response relation is satisfied in terms of appropriate observables. Our work is a first step toward the description of the out-of-equilibrium fluctuations of the surface of a thick epithelium and its dynamical response to external perturbations.
Many microorganisms and artificial microswimmers use helical appendages in order to generate locomotion. Though often rotated so as to produce thrust, some species of bacteria such Spiroplasma, Rhodobacter sphaeroides and Spirochetes induce movement
Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-
Sheep are gregarious animals, and they often aggregate into dense, cohesive flocks, especially under stress. In this paper, we use image processing tools to analyze a publicly available aerial video showing a dense sheep flock moving under the stimul
Compared to agile legged animals, wheeled and tracked vehicles often suffer large performance loss on granular surfaces like sand and gravel. Understanding the mechanics of legged locomotion on granular media can aid the development of legged robots
Interfaces between stratified epithelia and their supporting stromas commonly exhibit irregular shapes. Undulations are particularly pronounced in dysplastic tissues and typically evolve into long, finger-like protrusions in carcinomas. In a previous