ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for scalar gravitational interactions in current and future cosmological data

76   0   0.0 ( 0 )
 نشر من قبل Alireza Hojjati
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modified gravity theories often contain a scalar field of gravitational strength which interacts with matter. We examine constraints on the range and the coupling strength of a scalar gravitational degree of freedom using a subset of current data that can be safely analyzed within the linear perturbation theory. Using a model-independent implementation of scalar-tensor theories in MGCAMB in terms of two functions of the scale factor describing the mass and the coupling of the scalar degree of freedom, we derive constraints on the $f(R)$, generalized chameleon, Symmetron and Dilaton models. Since most of the large scale structure data available today is from relatively low redshifts, only a limited range of observed scales is in the linear regime, leading to relatively weak constraints. We then perform a forecast for a future large scale structure survey, such as Large Synoptic Survey Telescope (LSST), which will map a significant volume at higher redshifts, and show that it will produce much stronger constraints on scalar interactions in specific models. We also perform a principal component analysis and find that future surveys should be able to provide tight constraints on several eigenmodes of the scalar mass evolution.



قيم البحث

اقرأ أيضاً

We investigate the idea that current cosmic acceleration could be the consequence of gravitational leakage into extra dimensions on cosmological scales rather than the result of a non-zero cosmological constant, and consider the ability of future gra vitational-wave siren observations to probe this phenomenon and constrain the parameters of phenomenological models of this gravitational leakage. In theories that include additional non-compact spacetime dimensions, the gravitational leakage intro extra dimensions leads to a reduction in the amplitude of observed gravitational waves and thereby a systematic discrepancy between the distance inferred to such sources from GW and EM observations. We investigate the capability of a gravitational space interferometer such as LISA to probe this modified gravity on large scales. We find that the extent to which LISA will be able to place limits on the number of spacetime dimensions and other cosmological parameters characterising modified gravity will strongly depend on the actual number and redshift distribution of sources, together with the uncertainty on the GW measurements. A relatively small number of sources ($sim 1$) and high measurement uncertainties would strongly restrict the ability of LISA to place meaningful constraints on the parameters in cosmological scenarios where gravity is only five-dimensional and modified at scales larger than about $sim 4$ times the Hubble radius. Conversely, if the number of sources observed amounts to a four-year average of $sim 27$, then in the most favourable cosmological scenarios LISA has the potential to place meaningful constraints on the cosmological parameters with a precision of $sim 1%$ on the number of dimensions and $sim 7.5%$ on the scale beyond which gravity is modified, thereby probing the late expansion of the universe up to a redshift of $sim 8$.
We review, compare and extend recent studies searching for evidence for a preferred cosmological axis. We start from the Union2 SnIa dataset and use the hemisphere comparison method to search for a preferred axis in the data. We find that the hemisph ere of maximum accelerating expansion rate is in the direction $(l,b)=({309^circ}^{+23^circ}_{-3^circ}, {18^circ}^{+11^circ}_{-10^circ})$ ($omm=0.19$) while the hemisphere of minimum acceleration is in the opposite direction $(l,b)=({129^circ}^{+23^circ}_{-3^circ},{-18^circ}^{+10^circ}_{-11^circ})$ ($omm=0.30$). The level of anisotropy is described by the normalized difference of the best fit values of $omm$ between the two hemispheres in the context of lcdm fits. We find a maximum anisotropy level in the Union2 data of $frac{Delta ommax}{bomm}=0.43pm 0.06$. Such a level does not necessarily correspond to statistically significant anisotropy because it is reproduced by about $30%$ of simulated isotropic data mimicking the best fit Union2 dataset. However, when combined with the axes directions of other cosmological observations (bulk velocity flow axis, three axes of CMB low multipole moments and quasar optical polarization alignment axis), the statistical evidence for a cosmological anisotropy increases dramatically. We estimate the probability that the above independent six axes directions would be so close in the sky to be less than $1%$. Thus either the relative coincidence of these six axes is a very large statistical fluctuation or there is an underlying physical or systematic reason that leads to their correlation.
We present cosmological constraints on the scalar-tensor theory of gravity by analyzing the angular power spectrum data of the cosmic microwave background obtained from the Planck 2015 results together with the baryon acoustic oscillations (BAO) data . We find that the inclusion of the BAO data improves the constraints on the time variation of the effective gravitational constant by more than $10%$, that is, the time variation of the effective gravitational constant between the recombination and the present epochs is constrained as $G_{rm rec}/G_0-1 <1.9times 10^{-3} (95.45% {rm C.L.})$ and $G_{rm rec}/G_0-1 <5.5times 10^{-3} (99.99 % {rm C.L.})$. We also discuss the dependence of the constraints on the choice of the prior.
We search for isotropic stochastic gravitational-wave background (SGWB) in the International Pulsar Timing Array second data release. By modeling the SGWB as a power-law, we find very strong Bayesian evidence for a common-spectrum process, and furthe r this process has scalar transverse (ST) correlations allowed in general metric theory of gravity as the Bayes factor in favor of the ST-correlated process versus the spatially uncorrelated common-spectrum process is $30pm 2$. The median and the $90%$ equal-tail amplitudes of ST mode are $mathcal{A}_{mathrm{ST}}= 1.29^{+0.51}_{-0.44} times 10^{-15}$, or equivalently the energy density parameter per logarithm frequency is $Omega_{mathrm{GW}}^{mathrm{ST}} = 2.31^{+2.19}_{-1.30} times 10^{-9}$, at frequency of 1/year. However, we do not find any statistically significant evidence for the tensor transverse (TT) mode and then place the $95%$ upper limits as $mathcal{A}_{mathrm{TT}}< 3.95 times 10^{-15}$, or equivalently $Omega_{mathrm{GW}}^{mathrm{TT}}< 2.16 times 10^{-9}$, at frequency of 1/year.
113 - M.J. Reboucas , A. Bernui 2015
The statistical properties of the temperature anisotropies and polarization of the of cosmic microwave background (CMB) radiation offer a powerful probe of the physics of the early universe. In recent works a statistical procedure based upon the calc ulation of the kurtosis and skewness of the data in patches of CMB sky-sphere has been proposed and used to investigate the large-angle deviation from Gaussianity in WMAP maps. Here we briefly address the question as to how this analysis of Gaussianity is modified if the foreground-cleaned Planck maps are considered. We show that although the foreground-cleaned Planck maps present significant deviation from Gaussianity of different degrees when a less severe mask is used, they become consistent with Gaussianity, as detected by our indicators, when masked with the union mask U73.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا