ترغب بنشر مسار تعليمي؟ اضغط هنا

Anti-invariant Riemannian Submersions

96   0   0.0 ( 0 )
 نشر من قبل JeongHyeong Park
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a general Lie-theoretic construction for anti-invariant almost Hermitian Riemannian submersions, anti-invariant quaternion Riemannian submersions, anti-invariant para-Hermitian Riemannian submersions, anti-invariant para-quaternion Riemannian submersions, and anti-invariant octonian Riemannian submersions. This yields many compact Einstein examples.



قيم البحث

اقرأ أيضاً

In this paper, we study biharmonic Riemannian submersions. We first derive bitension field of a general Riemannian submersion, we then use it to obtain biharmonic equations for Riemannian submersions with $1$-dimensional fibers and Riemannian submers ions with basic mean curvature vector fields of fibers. These are used to construct examples of proper biharmonic Riemannian submersions with $1$-dimensional fibers and to characterize warped products whose projections onto the first factor are biharmonic Riemannian submersions.
We study generic Riemannian submersions from nearly Kaehler manifolds onto Riemannian manifolds. We investigate conditions for the integrability of various distributions arising for generic Riemannian submersions and also obtain conditions for leaves to be totally geodesic foliations. We obtain conditions for a generic Riemannian submersion to be a totally geodesic map and also study generic Riemannian submersions with totally umbilical fibers. Finally, we derive conditions for generic Riemannian submersions to be harmonic map.
Symmetric Positive Definite (SPD) matrices are ubiquitous in data analysis under the form of covariance matrices or correlation matrices. Several O(n)-invariant Riemannian metrics were defined on the SPD cone, in particular the kernel metrics introdu ced by Hiai and Petz. The class of kernel metrics interpolates between many classical O(n)-invariant metrics and it satisfies key results of stability and completeness. However, it does not contain all the classical O(n)-invariant metrics. Therefore in this work, we investigate super-classes of kernel metrics and we study which key results remain true. We also introduce an additional key result called cometric-stability, a crucial property to implement geodesics with a Hamiltonian formulation. Our method to build intermediate embedded classes between O(n)-invariant metrics and kernel metrics is to give a characterization of the whole class of O(n)-invariant metrics on SPD matrices and to specify requirements on metrics one by one until we reach kernel metrics. As a secondary contribution, we synthesize the literature on the main O(n)-invariant metrics, we provide the complete formula of the sectional curvature of the affine-invariant metric and the formula of the geodesic parallel transport between commuting matrices for the Bures-Wasserstein metric.
In the present paper, we investigate geometric properties of Clairaut anti-invariant submersions whose total space is a nearly Kaehler manifold. We obtain condition for Clairaut anti-invariant submersion to be a totally geodesic map and also study Cl airaut anti-invariant submersions with totally umbilical fibers. In the last, we introduce illustrative example.
We study harmonic almost contact structures in the context of contact metric manifolds, and an analysis is carried out when such a manifold fibres over an almost Hermitian manifold, as exemplified by the Boothby-Wang fibration. Two types of almost co ntact metric warped products are also studied, relating their harmonicity to that of the almost Hermitian structure on the base or fibre.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا