ترغب بنشر مسار تعليمي؟ اضغط هنا

A quantum memory with near-millisecond coherence in circuit QED

459   0   0.0 ( 0 )
 نشر من قبل Matthew Reagor
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Significant advances in coherence have made superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by qubits, while maintaining superior coherence. We demonstrate a novel superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for near-millisecond storage of quantum states in a resonator while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. The observed coherence times constitute an improvement of almost an order of magnitude over those of the best available superconducting qubits. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing with Josephson junction-based quantum circuits.

قيم البحث

اقرأ أيضاً

Superconducting circuits are one of the leading quantum platforms for quantum technologies. With growing system complexity, it is of crucial importance to develop scalable circuit models that contain the minimum information required to predict the be haviour of the physical system. Based on microwave engineering methods, divergent and non-divergent Hamiltonian models in circuit quantum electrodynamics have been proposed to explain the dynamics of superconducting quantum networks coupled to infinite-dimensional systems, such as transmission lines and general impedance environments. Here, we study systematically common linear coupling configurations between networks and infinite-dimensional systems. The main result is that the simple Lagrangian models for these configurations present an intrinsic natural length that provides a natural ultraviolet cutoff. This length is due to the unavoidable dressing of the environment modes by the network. In this manner, the coupling parameters between their components correctly manifest their natural decoupling at high frequencies. Furthermore, we show the requirements to correctly separate infinite-dimensional coupled systems in local bases. We also compare our analytical results with other analytical and approximate methods available in the literature. Finally, we propose several applications of these general methods to analog quantum simulation of multi-spin-boson models in non-perturbative coupling regimes.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with $T_2 sim 10 mu$s to $20 mu$s without the use of spin echo, and highly stable, showing no evidence for $1/f$ critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few $10^{-4}$, approaching the error correction threshold.
142 - G. Romero , E. Solano , 2016
Superconducting circuits have become a leading quantum technology for testing fundamentals of quantum mechanics and for the implementation of advanced quantum information protocols. In this chapter, we revise the basic concepts of circuit network the ory and circuit quantum electrodynamics for the sake of digital and analog quantum simulations of quantum field theories, relativistic quantum mechanics, and many-body physics, involving fermions and bosons. Based on recent improvements in scalability, controllability, and measurement, superconducting circuits can be considered as a promising quantum platform for building scalable digital and analog quantum simulators, enjoying unique and distinctive properties when compared to other advanced platforms as trapped ions, quantum photonics and optical lattices.
Correlations are important tools in the characterization of quantum fields. They can be used to describe statistical properties of the fields, such as bunching and anti-bunching, as well as to perform field state tomography. Here we analyse experimen ts by Bozyigit et al. [arXiv:1002.3738] where correlation functions can be observed using the measurement records of linear detectors (i.e. quadrature measurements), instead of relying on intensity or number detectors. We also describe how large amplitude noise introduced by these detectors can be quantified and subtracted from the data. This enables, in particular, the observation of first- and second-order coherence functions of microwave photon fields generated using circuit quantum-electrodynamics and propagating in superconducting transmission lines under the condition that noise is sufficiently low.
We experimentally study the behavior of a parametrically pumped nonlinear oscillator, which is based on a superconducting lambda /4 resonator, and is terminated by a flux-tunable SQUID. We extract parameters for two devices. In particular, we study t he effect of the nonlinearities in the system and compare to theory. The Duffing nonlinearity, alpha, is determined from the probe-power dependent frequency shift of the oscillator, and the nonlinearity, beta, related to the parametric flux pumping, is determined from the pump amplitude for the onset of parametric oscillations. Both nonlinearities depend on the parameters of the device and can be tuned in-situ by the applied dc flux. We also suggest how to cancel the effect of beta by adding a small dc flux and a pump tone at twice the pump frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا